A256811 Primes p such that (p^2+2)/3 and (p^4+2)/3 are prime.
37, 521, 881, 1619, 2053, 2213, 2341, 3527, 3637, 3727, 4157, 5147, 7019, 10009, 10891, 12277, 14741, 15913, 16273, 17747, 18757, 24499, 25307, 25577, 26209, 27073, 31481, 31517, 32833, 35083, 36739, 36791, 39079, 40231, 40949, 41039, 42013, 42461, 42767, 47917
Offset: 1
Examples
a(1) = 37; (37^2 + 2)/3 = 457; (37^4 + 2)/3 = 624721; all three are prime.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[p: p in PrimesUpTo(5*10^4) | IsPrime((p^2+2) div 3) and IsPrime((p^4+2) div 3 )]; // Vincenzo Librandi, Apr 20 2015
-
Mathematica
Select[Prime[Range[10^4]], PrimeQ[(#^2 + 2)/3] && PrimeQ[(#^4 + 2)/3] &]
-
PARI
forprime(p=1,10^5,if(!((p^2+2)%3)&&!((p^4+2)%3)&&isprime((p^2+2)/3)&&isprime((p^4+2)/3),print1(p,", "))) \\ Derek Orr, Apr 16 2015