cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256811 Primes p such that (p^2+2)/3 and (p^4+2)/3 are prime.

Original entry on oeis.org

37, 521, 881, 1619, 2053, 2213, 2341, 3527, 3637, 3727, 4157, 5147, 7019, 10009, 10891, 12277, 14741, 15913, 16273, 17747, 18757, 24499, 25307, 25577, 26209, 27073, 31481, 31517, 32833, 35083, 36739, 36791, 39079, 40231, 40949, 41039, 42013, 42461, 42767, 47917
Offset: 1

Views

Author

K. D. Bajpai, Apr 15 2015

Keywords

Examples

			a(1) = 37; (37^2 + 2)/3 = 457; (37^4 + 2)/3 = 624721; all three are prime.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(5*10^4) | IsPrime((p^2+2) div 3)  and IsPrime((p^4+2) div 3 )]; // Vincenzo Librandi, Apr 20 2015
  • Mathematica
    Select[Prime[Range[10^4]], PrimeQ[(#^2 + 2)/3] && PrimeQ[(#^4 + 2)/3] &]
  • PARI
    forprime(p=1,10^5,if(!((p^2+2)%3)&&!((p^4+2)%3)&&isprime((p^2+2)/3)&&isprime((p^4+2)/3),print1(p,", "))) \\ Derek Orr, Apr 16 2015