cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256833 a(n) = (4*n+3)*(4*n+2).

Original entry on oeis.org

6, 42, 110, 210, 342, 506, 702, 930, 1190, 1482, 1806, 2162, 2550, 2970, 3422, 3906, 4422, 4970, 5550, 6162, 6806, 7482, 8190, 8930, 9702, 10506, 11342, 12210, 13110, 14042, 15006, 16002, 17030, 18090, 19182, 20306, 21462, 22650, 23870, 25122, 26406
Offset: 0

Views

Author

Bruce Zimov, Apr 10 2015

Keywords

Comments

Since 0 = Sin(Pi) = Sum_{n>=0}(-1)^n*Pi^(2n+1)/(2n+1)!, we can move the negative terms to the other side of the equation to get: Sum_{n>=0} Pi^(4n+1)/(4n+1)! = Sum_{n>=0}Pi^(4n+3)/(4n+3)!.
Now, if we let f(n) = Pi^(4n+1)/(4n+1)!, then the previous equation can be written as Sum_{n>=0}f(n) = Sum_{n>=0}(Pi^2/((4*n+3)*(4*n+2)))*f(n); a(n) is the n-th denominator on the right hand side.

Crossrefs

Programs

  • Magma
    [16*n^2 + 20*n + 6: n in [0..40]]; // Vincenzo Librandi, Apr 12 2015
    
  • Mathematica
    CoefficientList[Series[(6 + 24 x + 2 x^2) / (1 - x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Apr 12 2015 *)
  • PARI
    vector(50,n,(4*n-1)*(4*n-2)) \\ Derek Orr, Apr 13 2015

Formula

a(n) = 16*n^2 + 20*n + 6.
a(n) = 2*A033567(n+1).
G.f.: (6+24*x+2*x^2)/(1-x)^3. - Vincenzo Librandi, Apr 12 2015
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2. - Vincenzo Librandi, Apr 12 2015
a(n) = A016825(n)*A004767(n). - Tom Edgar, Apr 12 2015
a(n) = A002378(4*n+2) = 2*A000217(4*n+2). - Ivan N. Ianakiev, Apr 17 2015
E.g.f.: 2*exp(x)*(3+18*x+8*x^2). - Wesley Ivan Hurt, Apr 29 2020
From Amiram Eldar, Jan 03 2022: (Start)
Sum_{n>=0} 1/a(n) = Pi/8 - log(2)/4.
Sum_{n>=0} (-1)^n/a(n) = sqrt(2)*log(sqrt(2)+1)/4 - (sqrt(2)-1)*Pi/8. (End)

Extensions

More terms from Vincenzo Librandi, Apr 12 2015