A256833 a(n) = (4*n+3)*(4*n+2).
6, 42, 110, 210, 342, 506, 702, 930, 1190, 1482, 1806, 2162, 2550, 2970, 3422, 3906, 4422, 4970, 5550, 6162, 6806, 7482, 8190, 8930, 9702, 10506, 11342, 12210, 13110, 14042, 15006, 16002, 17030, 18090, 19182, 20306, 21462, 22650, 23870, 25122, 26406
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[16*n^2 + 20*n + 6: n in [0..40]]; // Vincenzo Librandi, Apr 12 2015
-
Mathematica
CoefficientList[Series[(6 + 24 x + 2 x^2) / (1 - x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Apr 12 2015 *)
-
PARI
vector(50,n,(4*n-1)*(4*n-2)) \\ Derek Orr, Apr 13 2015
Formula
a(n) = 16*n^2 + 20*n + 6.
a(n) = 2*A033567(n+1).
G.f.: (6+24*x+2*x^2)/(1-x)^3. - Vincenzo Librandi, Apr 12 2015
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2. - Vincenzo Librandi, Apr 12 2015
E.g.f.: 2*exp(x)*(3+18*x+8*x^2). - Wesley Ivan Hurt, Apr 29 2020
From Amiram Eldar, Jan 03 2022: (Start)
Sum_{n>=0} 1/a(n) = Pi/8 - log(2)/4.
Sum_{n>=0} (-1)^n/a(n) = sqrt(2)*log(sqrt(2)+1)/4 - (sqrt(2)-1)*Pi/8. (End)
Extensions
More terms from Vincenzo Librandi, Apr 12 2015
Comments