cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256852 Number of ways to write prime(n) = a^2 + b^4.

Original entry on oeis.org

1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2015

Keywords

Comments

a(A049084(A028916(n))) > 0; a(A049084(A256863(n))) = 0;
Conjecture: a(n) <= 2, empirically checked for the first 10^6 primes.
The conjecture is true, because by the uniqueness part of Fermat's two-squares theorem, at most one duplicate of a^2 + b^4 can exist. Namely, if a is a square, say a = B^2, then a^2 + b^4 = A^2 + B^4 where A = b^2. - Jonathan Sondow, Oct 03 2015
Friedlander and Iwaniec proved that a(n) > 0 infinitely often. - Jonathan Sondow, Oct 05 2015

Examples

			First numbers n, such that a(n) > 0:
.   k |  n |   prime(n)                    | a(n)
. ----+----+-------------------------------+-----
.   1 |  1 |    2 = 1^2 + 1^4              |   1
.   2 |  3 |    5 = 2^2 + 1^4              |   1
.   3 |  7 |   17 = 1^2 + 2^4 = 4^2 + 1^4  |   2
.   4 | 12 |   37 = 6^2 + 1^4              |   1
.   5 | 13 |   41 = 5^2 + 2^4              |   1
.   6 | 25 |   97 = 4^2 + 3^4 = 9^2 + 2^4  |   2
.   7 | 33 |  101 = 10^2 + 1^4             |   1
.   8 | 42 |  181 = 10^2 + 3^4             |   1
.   9 | 45 |  197 = 14^2 + 1^4             |   1
.  10 | 53 |  241 = 15^2 + 2^4             |   1
.  11 | 55 |  257 = 1^2 + 4^4 = 16^2 + 1^4 |   2
.  12 | 59 |  277 = 14^2 + 3^4             |   1
.  13 | 60 |  281 = 5^2 + 4^4              |   1
.  14 | 68 |  337 = 9^2 + 4^4 = 16^2 + 3^4 |   2
.  15 | 79 |  401 = 20^2 + 1^4             |   1
.  16 | 88 |  457 = 21^2 + 2^4             |   1 .
		

Crossrefs

Programs

  • Haskell
    a256852 n = a256852_list !! (n-1)
    a256852_list = f a000040_list [] $ tail a000583_list where
       f ps'@(p:ps) us vs'@(v:vs)
         | p > v     = f ps' (v:us) vs
         | otherwise = (sum $ map (a010052 . (p -)) us) : f ps us vs'