cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A028916 Friedlander-Iwaniec primes: Primes of form a^2 + b^4.

Original entry on oeis.org

2, 5, 17, 37, 41, 97, 101, 137, 181, 197, 241, 257, 277, 281, 337, 401, 457, 577, 617, 641, 661, 677, 757, 769, 821, 857, 881, 977, 1097, 1109, 1201, 1217, 1237, 1297, 1301, 1321, 1409, 1481, 1601, 1657, 1697, 1777, 2017, 2069, 2137, 2281, 2389, 2417, 2437
Offset: 1

Views

Author

Keywords

Comments

John Friedlander and Henryk Iwaniec proved that there are infinitely many such primes.
A256852(A049084(a(n))) > 0. - Reinhard Zumkeller, Apr 11 2015
Primes in A111925. - Robert Israel, Oct 02 2015
Its intersection with A185086 is A262340, by the uniqueness part of Fermat's two-squares theorem. - Jonathan Sondow, Oct 05 2015
Cunningham calls these semi-quartan primes. - Charles R Greathouse IV, Aug 21 2017
Primes of the form (x^2 + y^2)/2, where x > y > 0, such that (x-y)/2 or (x+y)/2 is square. - Thomas Ordowski, Dec 04 2017
Named after the Canadian mathematician John Benjamin Friedlander (b. 1941) and the Polish-American mathematician Henryk Iwaniec (b. 1947). - Amiram Eldar, Jun 19 2021

Examples

			2 = 1^2 + 1^4.
5 = 2^2 + 1^4.
17 = 4^2 + 1^4 = 1^2 + 2^4.
		

Crossrefs

Cf. A000290, A000583, A000040, A256852, A256863 (complement), A002645 (subsequence), subsequence of A247857.
Primes of form n^2 + b^4, b fixed: A002496 (b = 1), A243451 (b = 2), A256775 (b = 3), A256776 (b = 4), A256777 (b = 5), A256834 (b = 6), A256835 (b = 7), A256836 (b = 8), A256837 (b = 9), A256838 (b = 10), A256839 (b = 11), A256840 (b = 12), A256841 (b = 13).

Programs

  • Haskell
    a028916 n = a028916_list !! (n-1)
    a028916_list = map a000040 $ filter ((> 0) . a256852) [1..]
    -- Reinhard Zumkeller, Apr 11 2015
  • Maple
    N:= 10^5: # to get all terms <= N
    S:= {seq(seq(a^2+b^4, a = 1 .. floor((N-b^4)^(1/2))),b=1..floor(N^(1/4)))}:
    sort(convert(select(isprime,S),list)); # Robert Israel, Oct 02 2015
  • Mathematica
    nn = 10000; t = {}; Do[n = a^2 + b^4; If[n <= nn && PrimeQ[n], AppendTo[t, n]], {a, Sqrt[nn]}, {b, nn^(1/4)}]; Union[t] (* T. D. Noe, Aug 06 2012 *)
  • PARI
    list(lim)=my(v=List([2]),t);for(a=1,sqrt(lim\=1),forstep(b=a%2+1, sqrtint(sqrtint(lim-a^2)), 2, t=a^2+b^4;if(isprime(t),listput(v,t)))); vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Jun 12 2013
    

Extensions

Title expanded by Jonathan Sondow, Oct 02 2015

A002645 Quartan primes: primes of the form x^4 + y^4, x > 0, y > 0.

Original entry on oeis.org

2, 17, 97, 257, 337, 641, 881, 1297, 2417, 2657, 3697, 4177, 4721, 6577, 10657, 12401, 14657, 14897, 15937, 16561, 28817, 38561, 39041, 49297, 54721, 65537, 65617, 66161, 66977, 80177, 83537, 83777, 89041, 105601, 107377, 119617, 121937
Offset: 1

Views

Author

Keywords

Comments

The largest known quartan prime is currently the largest known generalized Fermat prime: The 1353265-digit 145310^262144 + 1 = (145310^65536)^4 + 1^4, found by Ricky L Hubbard. - Jens Kruse Andersen, Mar 20 2011
Primes of the form (a^2 + b^2)/2 such that |a^2 - b^2| is a square. - Thomas Ordowski, Feb 22 2017

Examples

			a(1) =   2 = 1^4 + 1^4.
a(2) =  17 = 1^4 + 2^4.
a(3) =  97 = 2^4 + 3^4.
a(4) = 257 = 1^4 + 4^4.
		

References

  • A. J. C. Cunningham, Binomial Factorisations, Vols. 1-9, Hodgson, London, 1923-1929; see Vol. 1, pp. 245-259.
  • N. D. Elkies, Primes of the form a^4 + b^4, Mathematical Buds, Ed. H. D. Ruderman Vol. 3 Chap. 3 pp. 22-8 Mu Alpha Theta 1984.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subsequence of A002313 and of A028916.
Intersection of A004831 and A000040.

Programs

  • Haskell
    a002645 n = a002645_list !! (n-1)
    a002645_list = 2 : (map a000040 $ filter ((> 1) . a256852) [1..])
    -- Reinhard Zumkeller, Apr 11 2015
  • Mathematica
    nn = 100000; Sort[Reap[Do[n = a^4 + b^4; If[n <= nn && PrimeQ[n], Sow[n]], {a, nn^(1/4)}, {b, a}]][[2, 1]]]
    With[{nn=20},Select[Union[Flatten[Table[x^4+y^4,{x,nn},{y,nn}]]],PrimeQ[ #] && #<=nn^4+1&]] (* Harvey P. Dale, Aug 10 2021 *)
  • PARI
    upto(lim)=my(v=List(2),t);forstep(x=1,lim^.25,2,forstep(y=2,(lim-x^4)^.25,2,if(isprime(t=x^4+y^4),listput(v,t))));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 05 2011
    
  • PARI
    list(lim)=my(v=List([2]),x4,t); for(x=1,sqrtnint(lim\=1,4), x4=x^4; forstep(y=1+x%2,min(sqrtnint(lim-x4,4), x-1),2, if(isprime(t=x4+y^4), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Aug 20 2017
    

Formula

A000040 INTERSECTION A003336. - Jonathan Vos Post, Sep 23 2006
A256852(A049084(a(n))) > 1 for n > 1. - Reinhard Zumkeller, Apr 11 2015

Extensions

More terms from Victoria A Sapko (vsapko(AT)canes.gsw.edu), Nov 07 2002

A247857 Primes of the form a^2 + b^4, with repetition.

Original entry on oeis.org

2, 5, 17, 17, 37, 41, 97, 97, 101, 137, 181, 197, 241, 257, 257, 277, 281, 337, 337, 401, 457, 577, 617, 641, 641, 661, 677, 757, 769, 821, 857, 881, 881, 977, 1097, 1109, 1201, 1217, 1237, 1297, 1297, 1301, 1321, 1409, 1481, 1601, 1657, 1697, 1777, 2017, 2069, 2137, 2281, 2389, 2417, 2417, 2437
Offset: 1

Views

Author

Jean-François Alcover, Sep 25 2014

Keywords

Comments

Duplicates, which begin 17, 97, 257, 337, etc, are quartan primes A002645, except 2 (noticed by Michel Marcus).
Is there any triple?
No, by the uniqueness part of Fermat's two-squares theorem, at most one duplicate of a^2 + b^4 can exist. Namely, when a is a square, say a = B^2, then a^2 + b^4 = A^2 + B^4 where A = b^2. (This also proves Marcus's comment, since a^2 + b^4 = b^4 + B^4.) - Jonathan Sondow, Oct 03 2015

Examples

			Since 97 = 4^2 + 3^4 = 9^2 + 2^4, it appears twice in the sequence.
		

Crossrefs

Cf. A002645, A028916 (same sequence without repetition).

Programs

  • Haskell
    a247857 n = a247857_list !! (n-1)
    a247857_list = concat $ zipWith replicate a256852_list a000040_list
    -- Reinhard Zumkeller, Apr 11 2015
  • Mathematica
    max = 10^4; r = Reap[Do[n = a^2 + b^4; If[n <= max && PrimeQ[n], Sow[n]], {a, Sqrt[max]}, {b, max^(1/4)}]][[2, 1]]; Union[r, SameTest -> (False&)]

A256863 Primes that can't be written in form a^2 + b^4.

Original entry on oeis.org

3, 7, 11, 13, 19, 23, 29, 31, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 103, 107, 109, 113, 127, 131, 139, 149, 151, 157, 163, 167, 173, 179, 191, 193, 199, 211, 223, 227, 229, 233, 239, 251, 263, 269, 271, 283, 293, 307, 311, 313, 317, 331, 347, 349, 353
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2015

Keywords

Comments

Complement of A028916;
A256852(A049084(a(n))) = 0.

Crossrefs

Programs

  • Haskell
    a256863 n = a256863_list !! (n-1)
    a256863_list = map a000040 $ filter ((== 0) . a256852) [1..]
  • Mathematica
    Reap[Do[If[Reduce[p == a^2 + b^4, {a, b}, Integers] === False, Sow[p]], {p, Prime[Range[80]]}]][[2, 1]] (* Jean-François Alcover, Jan 31 2018 *)
Showing 1-4 of 4 results.