cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A028916 Friedlander-Iwaniec primes: Primes of form a^2 + b^4.

Original entry on oeis.org

2, 5, 17, 37, 41, 97, 101, 137, 181, 197, 241, 257, 277, 281, 337, 401, 457, 577, 617, 641, 661, 677, 757, 769, 821, 857, 881, 977, 1097, 1109, 1201, 1217, 1237, 1297, 1301, 1321, 1409, 1481, 1601, 1657, 1697, 1777, 2017, 2069, 2137, 2281, 2389, 2417, 2437
Offset: 1

Views

Author

Keywords

Comments

John Friedlander and Henryk Iwaniec proved that there are infinitely many such primes.
A256852(A049084(a(n))) > 0. - Reinhard Zumkeller, Apr 11 2015
Primes in A111925. - Robert Israel, Oct 02 2015
Its intersection with A185086 is A262340, by the uniqueness part of Fermat's two-squares theorem. - Jonathan Sondow, Oct 05 2015
Cunningham calls these semi-quartan primes. - Charles R Greathouse IV, Aug 21 2017
Primes of the form (x^2 + y^2)/2, where x > y > 0, such that (x-y)/2 or (x+y)/2 is square. - Thomas Ordowski, Dec 04 2017
Named after the Canadian mathematician John Benjamin Friedlander (b. 1941) and the Polish-American mathematician Henryk Iwaniec (b. 1947). - Amiram Eldar, Jun 19 2021

Examples

			2 = 1^2 + 1^4.
5 = 2^2 + 1^4.
17 = 4^2 + 1^4 = 1^2 + 2^4.
		

Crossrefs

Cf. A000290, A000583, A000040, A256852, A256863 (complement), A002645 (subsequence), subsequence of A247857.
Primes of form n^2 + b^4, b fixed: A002496 (b = 1), A243451 (b = 2), A256775 (b = 3), A256776 (b = 4), A256777 (b = 5), A256834 (b = 6), A256835 (b = 7), A256836 (b = 8), A256837 (b = 9), A256838 (b = 10), A256839 (b = 11), A256840 (b = 12), A256841 (b = 13).

Programs

  • Haskell
    a028916 n = a028916_list !! (n-1)
    a028916_list = map a000040 $ filter ((> 0) . a256852) [1..]
    -- Reinhard Zumkeller, Apr 11 2015
  • Maple
    N:= 10^5: # to get all terms <= N
    S:= {seq(seq(a^2+b^4, a = 1 .. floor((N-b^4)^(1/2))),b=1..floor(N^(1/4)))}:
    sort(convert(select(isprime,S),list)); # Robert Israel, Oct 02 2015
  • Mathematica
    nn = 10000; t = {}; Do[n = a^2 + b^4; If[n <= nn && PrimeQ[n], AppendTo[t, n]], {a, Sqrt[nn]}, {b, nn^(1/4)}]; Union[t] (* T. D. Noe, Aug 06 2012 *)
  • PARI
    list(lim)=my(v=List([2]),t);for(a=1,sqrt(lim\=1),forstep(b=a%2+1, sqrtint(sqrtint(lim-a^2)), 2, t=a^2+b^4;if(isprime(t),listput(v,t)))); vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Jun 12 2013
    

Extensions

Title expanded by Jonathan Sondow, Oct 02 2015

A256852 Number of ways to write prime(n) = a^2 + b^4.

Original entry on oeis.org

1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2015

Keywords

Comments

a(A049084(A028916(n))) > 0; a(A049084(A256863(n))) = 0;
Conjecture: a(n) <= 2, empirically checked for the first 10^6 primes.
The conjecture is true, because by the uniqueness part of Fermat's two-squares theorem, at most one duplicate of a^2 + b^4 can exist. Namely, if a is a square, say a = B^2, then a^2 + b^4 = A^2 + B^4 where A = b^2. - Jonathan Sondow, Oct 03 2015
Friedlander and Iwaniec proved that a(n) > 0 infinitely often. - Jonathan Sondow, Oct 05 2015

Examples

			First numbers n, such that a(n) > 0:
.   k |  n |   prime(n)                    | a(n)
. ----+----+-------------------------------+-----
.   1 |  1 |    2 = 1^2 + 1^4              |   1
.   2 |  3 |    5 = 2^2 + 1^4              |   1
.   3 |  7 |   17 = 1^2 + 2^4 = 4^2 + 1^4  |   2
.   4 | 12 |   37 = 6^2 + 1^4              |   1
.   5 | 13 |   41 = 5^2 + 2^4              |   1
.   6 | 25 |   97 = 4^2 + 3^4 = 9^2 + 2^4  |   2
.   7 | 33 |  101 = 10^2 + 1^4             |   1
.   8 | 42 |  181 = 10^2 + 3^4             |   1
.   9 | 45 |  197 = 14^2 + 1^4             |   1
.  10 | 53 |  241 = 15^2 + 2^4             |   1
.  11 | 55 |  257 = 1^2 + 4^4 = 16^2 + 1^4 |   2
.  12 | 59 |  277 = 14^2 + 3^4             |   1
.  13 | 60 |  281 = 5^2 + 4^4              |   1
.  14 | 68 |  337 = 9^2 + 4^4 = 16^2 + 3^4 |   2
.  15 | 79 |  401 = 20^2 + 1^4             |   1
.  16 | 88 |  457 = 21^2 + 2^4             |   1 .
		

Crossrefs

Programs

  • Haskell
    a256852 n = a256852_list !! (n-1)
    a256852_list = f a000040_list [] $ tail a000583_list where
       f ps'@(p:ps) us vs'@(v:vs)
         | p > v     = f ps' (v:us) vs
         | otherwise = (sum $ map (a010052 . (p -)) us) : f ps us vs'
Showing 1-2 of 2 results.