A256861 a(n) = n*(n + 1)*(n + 2)*(n + 3)*(n + 4)*(n^2 - n + 6)/720.
1, 8, 42, 168, 546, 1512, 3696, 8184, 16731, 32032, 58058, 100464, 167076, 268464, 418608, 635664, 942837, 1369368, 1951642, 2734424, 3772230, 5130840, 6888960, 9140040, 11994255, 15580656, 20049498, 25574752, 32356808, 40625376, 50642592, 62706336
Offset: 1
Links
- D. A. Sardelis and T. M. Valahas, On Multidimensional Pythagorean Numbers, arXiv:0805.4070 [math.GM], 2008.
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
Programs
-
Mathematica
Table[n (1 + n) (2 + n) (3 + n) (4 + n) (6 - n + n^2)/720, {n, 40}] Table[Times@@(n+Range[0,4])(n^2-n+6)/720,{n,40}] (* or *) LinearRecurrence[ {8,-28,56,-70,56,-28,8,-1},{1,8,42,168,546,1512,3696,8184},40] (* Harvey P. Dale, Sep 25 2019 *)
-
PARI
vector(40, n, n*(n+1)*(n+2)*(n+3)*(n+4)*(n^2-n+6)/720) \\ Bruno Berselli, Apr 15 2015
Formula
G.f.: x*(1 + 6*x^2)/(1 - x)^8.
Comments