cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256917 Primes which are not the sums of two consecutive nonsquares.

Original entry on oeis.org

2, 3, 7, 17, 19, 31, 71, 73, 97, 127, 163, 199, 241, 337, 449, 577, 647, 881, 883, 967, 1151, 1153, 1249, 1459, 1567, 1801, 2179, 2311, 2591, 2593, 2887, 3041, 3361, 3527, 3529, 3697, 4049, 4051, 4231, 4801, 4999, 5407, 6271, 6961, 7687, 7937, 8191, 8713, 9521, 10369, 10657
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 23 2015

Keywords

Comments

The union of 2 and A066436 and A090698.
The sums of two consecutive nonsquares are 5, 8, 11, 13, 15, 18, 21, 23, 25, 27, 29, 32, 35, 37, ...

Examples

			2, 3, 7 are in this sequence because first three sums of two consecutive nonsquares are 5, 8, 11 and 2, 3, 7 are primes.
		

Crossrefs

Programs

  • Mathematica
    Union[{2},Select[Table[2n^2-1,{n,0,1000}],PrimeQ],Select[Table[2n^2+1,{n,0,1000}],PrimeQ]] (* Ivan N. Ianakiev, Apr 24 2015 *)
    Module[{nn=11000,ns},ns=Total/@Partition[Select[Range[nn],!IntegerQ[Sqrt[#]]&],2,1]; Complement[ Prime[Range[PrimePi[Last[ns]]]],ns]] (* Harvey P. Dale, Mar 06 2024 *)
  • PARI
    a256917(maxp) = {
      ps=[2];
      k=1; while((t=2*k^2-1)<=maxp, k++; if(isprime(t), ps=setunion(ps, [t])));
      k=1; while((t=2*k^2+1)<=maxp, k++; if(isprime(t), ps=setunion(ps, [t])));
      ps
    }
    a256917(11000) \\ Colin Barker, Apr 23 2015
    
  • PARI
    list(lim)=my(v=List([2]),t); for(k=2,sqrtint((lim+1)\2), if(isprime(t=2*k^2-1), listput(v,t))); for(k=1,sqrtint((lim-1)\2), if(isprime(t=2*k^2+1), listput(v,t))); Set(v) \\ Charles R Greathouse IV, Apr 23 2015