A256917 Primes which are not the sums of two consecutive nonsquares.
2, 3, 7, 17, 19, 31, 71, 73, 97, 127, 163, 199, 241, 337, 449, 577, 647, 881, 883, 967, 1151, 1153, 1249, 1459, 1567, 1801, 2179, 2311, 2591, 2593, 2887, 3041, 3361, 3527, 3529, 3697, 4049, 4051, 4231, 4801, 4999, 5407, 6271, 6961, 7687, 7937, 8191, 8713, 9521, 10369, 10657
Offset: 1
Examples
2, 3, 7 are in this sequence because first three sums of two consecutive nonsquares are 5, 8, 11 and 2, 3, 7 are primes.
Links
- Colin Barker and Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 800 terms from Barker)
Programs
-
Mathematica
Union[{2},Select[Table[2n^2-1,{n,0,1000}],PrimeQ],Select[Table[2n^2+1,{n,0,1000}],PrimeQ]] (* Ivan N. Ianakiev, Apr 24 2015 *) Module[{nn=11000,ns},ns=Total/@Partition[Select[Range[nn],!IntegerQ[Sqrt[#]]&],2,1]; Complement[ Prime[Range[PrimePi[Last[ns]]]],ns]] (* Harvey P. Dale, Mar 06 2024 *)
-
PARI
a256917(maxp) = { ps=[2]; k=1; while((t=2*k^2-1)<=maxp, k++; if(isprime(t), ps=setunion(ps, [t]))); k=1; while((t=2*k^2+1)<=maxp, k++; if(isprime(t), ps=setunion(ps, [t]))); ps } a256917(11000) \\ Colin Barker, Apr 23 2015
-
PARI
list(lim)=my(v=List([2]),t); for(k=2,sqrtint((lim+1)\2), if(isprime(t=2*k^2-1), listput(v,t))); for(k=1,sqrtint((lim-1)\2), if(isprime(t=2*k^2+1), listput(v,t))); Set(v) \\ Charles R Greathouse IV, Apr 23 2015
Comments