cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A256919 Decimal expansion of Sum_{k>=1} (zeta(4*k) - 1).

Original entry on oeis.org

0, 8, 6, 6, 6, 2, 9, 7, 6, 2, 6, 5, 7, 0, 9, 4, 1, 2, 9, 3, 2, 9, 7, 4, 6, 0, 2, 6, 2, 4, 9, 9, 9, 7, 5, 4, 7, 7, 7, 1, 7, 1, 8, 6, 6, 7, 9, 8, 0, 9, 1, 6, 6, 7, 2, 1, 2, 4, 6, 8, 7, 5, 7, 8, 0, 4, 9, 2, 2, 8, 7, 6, 0, 4, 0, 8, 4, 4, 9, 8, 9, 1, 2, 8, 2, 1, 7, 2, 2, 4, 1, 2, 0, 3, 0, 2, 2, 5, 4, 0, 6, 1, 7, 4, 1
Offset: 0

Views

Author

Jean-François Alcover, Apr 13 2015

Keywords

Examples

			0.0866629762657094129329746026249997547771718667980916672...
= -3 + Pi^4/90 + Pi^8/9450 + 691*Pi^12/638512875 + ...
		

References

  • H. M. Srivastava and Junesang Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Insights (2011) p. 265.

Crossrefs

Programs

  • Mathematica
    Join[{0}, RealDigits[7/8 - (Pi/4)*Coth[Pi], 10, 104] // First]

Formula

Equals 7/8 - (Pi/4)*coth(Pi).
Equals Sum_{n>=2} 1/(n^4 - 1). - Vaclav Kotesovec, Dec 08 2020
Equals (1/2)* Sum_{n>=2} 1/(n^2-1) - (1/2)* Sum_{n>=2} 1/(n^2+1) = (3/4 - A100554)/2. - R. J. Mathar, Jan 22 2021

A339530 Decimal expansion of Sum_{k>=1} (zeta(8*k)-1).

Original entry on oeis.org

0, 0, 4, 0, 9, 2, 6, 9, 8, 2, 9, 9, 2, 8, 6, 2, 8, 7, 3, 0, 7, 4, 7, 6, 2, 0, 4, 6, 8, 9, 6, 4, 0, 2, 5, 9, 8, 6, 5, 2, 4, 9, 8, 2, 4, 7, 3, 5, 4, 0, 0, 1, 6, 9, 8, 1, 2, 4, 9, 1, 0, 5, 6, 0, 0, 5, 5, 5, 7, 2, 1, 3, 9, 8, 9, 5, 8, 1, 9, 3, 5, 8, 3, 5, 4, 4, 8, 8, 9, 4, 3, 5, 1, 8, 1, 9, 6, 9, 5, 1, 1, 5, 0, 3, 6
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 08 2020, following a suggestion of Artur Jasinski

Keywords

Examples

			0.00409269829928628730747620468964025986524982473540016981249105600555721...
		

Crossrefs

Programs

  • Mathematica
    Join[{0, 0}, RealDigits[15/16 - Pi*Coth[Pi]/8 + Pi*(Sin[Sqrt[2]*Pi] + Sinh[Sqrt[2]*Pi]) / (4*Sqrt[2]*(Cos[Sqrt[2]*Pi] - Cosh[Sqrt[2]*Pi])), 10, 100][[1]]]

Formula

Equals Sum_{k>=2} 1/(k^8 - 1).
Equals 15/16 - Pi*coth(Pi)/8 + Pi * (sin(sqrt(2)*Pi) + sinh(sqrt(2)*Pi)) / (4*sqrt(2) * (cos(sqrt(2)*Pi) - cosh(sqrt(2)*Pi))).
Equals (1/2)*Sum_{k>=2} 1/(k^4-1) - (1/2)*Sum_{k>=2} 1/(k^4+1) = (A256919-A256920)/2. - R. J. Mathar, Jan 22 2021

A354051 Decimal expansion of Sum_{k>=0} 1 / (k^4 + 1).

Original entry on oeis.org

1, 5, 7, 8, 4, 7, 7, 5, 7, 9, 6, 6, 7, 1, 3, 6, 8, 3, 8, 3, 1, 8, 0, 2, 2, 1, 9, 3, 2, 4, 5, 7, 1, 9, 2, 3, 5, 0, 4, 6, 6, 7, 2, 2, 1, 7, 3, 2, 7, 2, 9, 1, 3, 2, 7, 5, 8, 7, 4, 8, 6, 6, 4, 5, 7, 9, 3, 8, 0, 8, 4, 4, 8, 0, 6, 1, 6, 8, 1, 1, 1, 7, 4, 5, 7, 3, 1, 9, 4, 3, 5, 4, 1, 6, 6, 6, 2, 8, 6, 3, 8, 3, 1, 6, 6
Offset: 1

Views

Author

Vaclav Kotesovec, May 16 2022, following a suggestion from Bernard Schott

Keywords

Comments

Apart from leading digits the same as A256920. - R. J. Mathar, May 20 2022

Examples

			1.578477579667136838318022193245719235046672217327291327587486645793808...
		

Crossrefs

Programs

  • Maple
    evalf(1/2 + (Pi*(sinh(sqrt(2)*Pi) + sin(sqrt(2)*Pi))) / (2*sqrt(2)*(cosh(sqrt(2)*Pi) - cos(sqrt(2)*Pi))), 105);
  • Mathematica
    RealDigits[Chop[N[Sum[1/(k^4 + 1), {k, 0, Infinity}], 105]]][[1]]
  • PARI
    sumpos(k=0, 1/(k^4 + 1))

Formula

Equals 1/2 + (Pi*(sinh(sqrt(2)*Pi) + sin(sqrt(2)*Pi))) / (2*sqrt(2)*(cosh(sqrt(2)*Pi) - cos(sqrt(2)*Pi))).
Showing 1-3 of 3 results.