cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256921 Decimal expansion of Sum_{k>=2} zeta(k)/(k*2^k).

Original entry on oeis.org

2, 8, 3, 7, 5, 7, 1, 1, 0, 4, 7, 3, 9, 3, 3, 6, 5, 6, 7, 6, 8, 4, 5, 7, 6, 3, 0, 6, 3, 5, 3, 2, 8, 1, 4, 0, 3, 0, 2, 5, 6, 7, 7, 3, 8, 4, 8, 7, 6, 9, 3, 9, 8, 6, 3, 5, 3, 9, 2, 7, 9, 1, 8, 2, 9, 3, 6, 3, 5, 0, 2, 1, 5, 5, 3, 5, 8, 0, 7, 0, 4, 4, 2, 3, 3, 3, 8, 1, 0, 3, 4, 9, 1, 8, 7, 1, 4, 7, 9, 0, 9, 3, 6, 8, 9
Offset: 0

Views

Author

Jean-François Alcover, Apr 13 2015

Keywords

Examples

			0.2837571104739336567684576306353281403025677384876939863539279...
		

References

  • H. M. Srivastava and Junesang Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Insights (2011) p. 272.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); (Log(Pi(R)) - EulerGamma(R))/2; // G. C. Greubel, Sep 04 2018
  • Mathematica
    RealDigits[(1/2)*Log[Pi] - EulerGamma/2, 10, 105] // First
  • PARI
    log(Pi)/2 - Euler/2 \\ Michel Marcus, Apr 13 2015
    

Formula

Equals (1/2)*log(Pi) - EulerGamma/2.
Equals Sum_{k>0} (-1)^(k+1)*(H(k)-log(k)-EulerGamma), where H(k) is the k-th harmonic number.
Equals -Sum_{k>=1} (1/(2*k) + log(1 - 1/(2*k))). - Amiram Eldar, Jul 22 2020