cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A256922 Decimal expansion of Sum_{k>=2} (-1)^k*zeta(k)/(k*2^k).

Original entry on oeis.org

1, 6, 7, 8, 2, 5, 5, 9, 4, 8, 1, 5, 5, 2, 1, 2, 0, 7, 9, 5, 7, 7, 3, 7, 5, 9, 9, 2, 5, 9, 5, 5, 4, 0, 0, 3, 2, 6, 9, 2, 2, 6, 9, 4, 0, 0, 6, 7, 3, 6, 2, 3, 3, 1, 0, 3, 9, 0, 1, 5, 1, 4, 3, 6, 8, 5, 1, 0, 9, 1, 2, 6, 3, 6, 1, 5, 5, 0, 6, 5, 9, 7, 5, 4, 4, 2, 1, 8, 3, 9, 7, 8, 7, 1, 9, 9, 5, 4, 1, 0, 6, 6, 3, 1, 9
Offset: 0

Views

Author

Jean-François Alcover, Apr 13 2015

Keywords

Examples

			0.167825594815521207957737599259554003269226940067362331039...
		

References

  • H. M. Srivastava and Junesang Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Insights (2011) p. 272.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); EulerGamma(R)/2 + (1/2)*Log(Pi(R)) - Log(2); // G. C. Greubel, Sep 05 2018
  • Mathematica
    RealDigits[EulerGamma/2 + (1/2)*Log[Pi] - Log[2], 10, 105] // First
  • PARI
    Euler/2 + log(Pi)/2 - log(2) \\ Michel Marcus, Apr 13 2015
    

Formula

Equals A001620/2 + (1/2)*log(Pi) - log(2).
Equals Sum_{k>=1} (1/(2*k) - log(1 + 1/(2*k))). - Amiram Eldar, Jul 22 2020
Equals (A001620 - A094640)/2. - Ruud H.G. van Tol, Apr 26 2025

A374775 Decimal expansion of (2 + gamma - log(Pi))/2.

Original entry on oeis.org

7, 1, 6, 2, 4, 2, 8, 8, 9, 5, 2, 6, 0, 6, 6, 3, 4, 3, 2, 3, 1, 5, 4, 2, 3, 6, 9, 3, 6, 4, 6, 7, 1, 8, 5, 9, 6, 9, 7, 4, 3, 2, 2, 6, 1, 5, 1, 2, 3, 0, 6, 0, 1, 3, 6, 4, 6, 0, 7, 2, 0, 8, 1, 7, 0, 6, 3, 6, 4, 9, 7, 8, 4, 4, 6, 4, 1, 9, 2, 9, 5, 5, 7, 6, 6, 6, 1, 8, 9, 6, 5, 0, 8, 1, 2, 8, 5, 2, 0, 9
Offset: 0

Views

Author

Stefano Spezia, Jul 19 2024

Keywords

Examples

			0.71624288952606634323154236936467185969743226151231...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(2+EulerGamma-Log[Pi])/2,10,100][[1]]

Formula

Equals 2*A374774.
Equals 1 - A256921. - Hugo Pfoertner, Jul 19 2024

A365959 Decimal expansion of Sum_{k>=2} zeta(k)/k^2.

Original entry on oeis.org

8, 3, 5, 9, 9, 8, 3, 3, 2, 7, 0, 0, 9, 6, 4, 3, 2, 2, 9, 7, 0, 9, 1, 1, 1, 9, 8, 6, 9, 6, 0, 2, 9, 0, 9, 6, 4, 2, 7, 0, 4, 2, 1, 6, 8, 0, 9, 3, 2, 3, 3, 2, 4, 8, 3, 2, 9, 5, 5, 6, 3, 4, 9, 2, 5, 7, 7, 0, 1, 8, 9, 5, 2, 5, 3, 1, 7, 3, 8, 8, 4, 0, 0, 2, 1, 9, 2, 2, 7, 6, 8, 8, 7, 7, 6, 6, 2, 2, 3, 2, 5, 7, 7, 8, 5, 5
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 23 2023

Keywords

Examples

			0.835998332700964322970911198696029096427042168093233248329556349257701895253...
		

Crossrefs

Programs

  • PARI
    sumpos(k=2,zeta(k)/k^2)

Formula

Equals Sum_{k>=1} (polylog(2, 1/k) - 1/k).
From Velin Yanev, Jul 30 2025: (Start)
Equals Integral_{x=0..1} log(Gamma(1 - x))/x dx - A001620. [Proved by Paul Enta, 2020]
Conjecture: Equals 2 - A001620 - Pi^2/12 + Integral_{x=0..oo} (2*x*arccot(x) - log(1/x^2 + 1))*log(1 - exp(-2*Pi*x))/(2*Pi*(x^2 + 1)) dx. (End)

A307671 Decimal expansion of the alternating convergent series S = Sum_{k>=0} (-1)^k*f(k), where f(k) = harmonic(2^k) - k*log(2) - gamma, harmonic(m) is the Sum_{j=1..m} 1/j, and gamma is Euler-Mascheroni constant.

Original entry on oeis.org

2, 7, 2, 3, 4, 3, 5, 8, 7, 7, 0, 7, 5, 9, 6, 7, 6, 4, 7, 8, 4, 0, 7, 0, 6, 7, 6, 9, 2, 3, 9, 5, 5, 5, 7, 8, 7, 4, 8, 2, 2, 5, 1, 0, 8, 0, 6, 4, 3, 9, 5, 8, 7, 1, 6, 4, 5, 3, 8, 9, 6, 2, 0, 4, 1, 2, 8, 3, 7, 5, 9, 7, 0, 0, 5, 7, 2, 9, 6, 5, 1, 1, 5, 0, 1, 2, 9, 8, 4, 6, 1, 7, 7, 3, 1, 3, 1, 7, 3, 9, 8, 0, 2, 7
Offset: 0

Views

Author

Luis H. Gallardo, Apr 20 2019

Keywords

Examples

			0.272343587707596764784070676923955578748225108064395871645389620412837597...
		

Crossrefs

Cf. A001620 (Euler-Mascheroni), A001008/A002805 (harmonic), A002162 (log(2)), A094640 (alternate Euler's constant), A256921 (a similar constant).

Programs

  • Maple
    evalf(Sum((-1)^k*(harmonic(2^k) - k*log(2) - gamma), k=0..infinity), 120); # Vaclav Kotesovec, Apr 30 2019
  • Mathematica
    digits = 104; s = NSum[(-1)^k*(HarmonicNumber[2^k] - k*Log[2] - EulerGamma), {k, 0, Infinity}, Method -> "AlternatingSigns", WorkingPrecision -> digits+10]; RealDigits[s, 10, digits][[1]] (* Jean-François Alcover, Apr 28 2019 *)
  • PARI
    default(realprecision, 120); sumalt(k=0, (-1)^k*(psi(2^k+1) - k*log(2))) \\ Vaclav Kotesovec, Apr 30 2019
Showing 1-4 of 4 results.