A257083 Partial sums of A257088.
1, 2, 6, 9, 17, 22, 34, 41, 57, 66, 86, 97, 121, 134, 162, 177, 209, 226, 262, 281, 321, 342, 386, 409, 457, 482, 534, 561, 617, 646, 706, 737, 801, 834, 902, 937, 1009, 1046, 1122, 1161, 1241, 1282, 1366, 1409, 1497, 1542, 1634, 1681, 1777, 1826, 1926, 1977
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Crossrefs
Programs
-
Haskell
a257083 n = a257083_list !! n a257083_list = scanl1 (+) a257088_list
-
Magma
[(6*n*(n+1) + (2*n+1)*(-1)^n + 7)/8 : n in [0..60]]; // Wesley Ivan Hurt, Oct 30 2022
-
Mathematica
Table[(6 n (n + 1) + (2 n + 1) (-1)^n + 7)/8, {n, 0, 60}] (* Bruno Berselli, Jan 05 2016 *)
-
PARI
vector(60, n, n--; (6*n*(n+1)+(2*n+1)*(-1)^n+7)/8) \\ Bruno Berselli, Jan 05 2016
Formula
From Bruno Berselli, Jan 05 2016: (Start)
G.f.: (1 + x + 2*x^2 + x^3 + x^4)/((1 + x)^2*(1 - x)^3).
a(n) = (6*n*(n+1) + (2*n+1)*(-1)^n + 7)/8. (End)
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). - Wesley Ivan Hurt, Oct 30 2022
Comments