cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A256633 Numbers n such that the decimal expansions of both n and n^2 have 0 as smallest digit and 6 as largest digit.

Original entry on oeis.org

60, 160, 460, 506, 560, 600, 601, 602, 605, 660, 1006, 1016, 1060, 1160, 1460, 1560, 1600, 1601, 1602, 1620, 2006, 2016, 2060, 2160, 2460, 2560, 3606, 4506, 4600, 4605, 4650, 5006, 5016, 5060, 5160, 5506, 5600, 5605, 5660, 6000, 6001, 6002, 6005, 6010, 6020
Offset: 1

Views

Author

Felix Fröhlich, Apr 05 2015

Keywords

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Block[{c = DigitCount@ n}, And[Plus @@ Take[c, {7, 9}] == 0, c[[6]] > 0, c[[10]] > 0]]; Select[Range@ 6400, fQ@ # && fQ[#^2] &] (* Michael De Vlieger, Apr 12 2015 *)
    Select[Range[6100],With[{idn=IntegerDigits[#],idn2=IntegerDigits[#^2]},Min[idn]==Min[idn2]==0&&Max[idn]==Max[idn2]==6]&] (* Harvey P. Dale, Feb 06 2025 *)
  • PARI
    is(n) = vecmin(digits(n))==0 && vecmin(digits(n^2))==0 && vecmax(digits(n))==6 && vecmax(digits(n^2))==6

A257086 Numbers n such that the decimal expansions of both n and n^2 only use the digits 0..5.

Original entry on oeis.org

0, 1, 2, 5, 10, 11, 12, 15, 20, 21, 32, 35, 45, 50, 55, 100, 101, 102, 105, 110, 111, 112, 115, 120, 145, 150, 152, 155, 200, 201, 205, 210, 211, 235, 320, 321, 332, 335, 350, 351, 450, 451, 452, 500, 501, 502, 505, 550, 1000, 1001, 1002, 1005, 1010, 1011, 1012, 1015, 1020, 1021, 1050, 1055, 1100
Offset: 1

Views

Author

Danny Rorabaugh, Apr 15 2015

Keywords

Examples

			115 is in the list because 115 and 115^2 = 13225 do not use the digits 6, 7, 8, or 9.
121 is not in the list because 121^2 = 14641 uses the digit 6.
149 is not in the list because it uses the digit 9 (even though 149^2 = 22201 would be okay).
		

Crossrefs

Cf. A178501 (0..1), A136808(0..2), A136809(0..3), A136810 (0..4), A257085 (0..6).

Programs

  • Mathematica
    Select[Range@ 1100, Total@ Take[DigitCount[#], {6, 9}] == 0 && Total@ Take[DigitCount[#^2], {6, 9}] == 0 &] (* Michael De Vlieger, Apr 17 2015 *)
Showing 1-2 of 2 results.