cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257088 a(2*n) = 4*n if n>0, a(2*n + 1) = 2*n + 1, a(0) = 1.

Original entry on oeis.org

1, 1, 4, 3, 8, 5, 12, 7, 16, 9, 20, 11, 24, 13, 28, 15, 32, 17, 36, 19, 40, 21, 44, 23, 48, 25, 52, 27, 56, 29, 60, 31, 64, 33, 68, 35, 72, 37, 76, 39, 80, 41, 84, 43, 88, 45, 92, 47, 96, 49, 100, 51, 104, 53, 108, 55, 112, 57, 116, 59, 120, 61, 124, 63, 128
Offset: 0

Views

Author

Michael Somos, Apr 16 2015

Keywords

Examples

			G.f. = 1 + x + 4*x^2 + 3*x^3 + 8*x^4 + 5*x^5 + 12*x^6 + 7*x^7 + 16*x^8 + ...
		

Crossrefs

CF. A257083 (partial sums), A246695.

Programs

  • Haskell
    import Data.List (transpose)
    a257088 n = a257088_list !! n
    a257088_list = concat $ transpose [a008574_list, a005408_list]
    -- Reinhard Zumkeller, Apr 17 2015
  • Mathematica
    a[ n_] := Which[ n < 1, Boole[n == 0], OddQ[n], n, True, 2 n];
    a[ n_] := SeriesCoefficient[ (1 + x + 2*x^2 + x^3 + x^4) / (1 - 2*x^2 + x^4), {x, 0, n}];
  • PARI
    {a(n) = if( n<1, n==0, n%2, n, 2*n)};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( (1 + x + 2*x^2 + x^3 + x^4) / (1 - 2*x^2 + x^4) + x * O(x^n), n))};
    

Formula

Euler transform of length 4 sequence [ 1, 3, -1, -1].
a(n) is multiplicative with a(2^e) = 2^(e+1) if e>0, otherwise a(p^e) = p^e.
G.f.: (1 + x + 2*x^2 + x^3 + x^4) / (1 - 2*x^2 + x^4).
G.f.: (1 - x^3) * (1 - x^4) / ((1 - x) * (1 - x^2)^3).
MOBIUS transform of A215947 is [1, 4, 3, 8, 5, ...].
a(n) = n * A040001(n) if n>0.
a(n) + a(n-1) = A007310(n) if n>0.
a(n) = A001082(n+1) - A001082(n) if n>0.
Binomial transform with a(0)=0 is A128543 if n>0.
a(2*n) = A008574(n). a(2*n + 1) = A005408(n).
a(n) = A022998(n) if n>0. - R. J. Mathar, Apr 19 2015
From Amiram Eldar, Jan 28 2025: (Start)
Dirichlet g.f.: (1+2^(1-s)) * zeta(s-1).
Sum_{k=1..n} a(k) ~ (3/4) * n^2. (End)
a(n) = gcd(n^n, 2*n). - Mia Boudreau, Jun 27 2025