cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257180 Triangle, read by rows, T(n,k) = t(n-k, k) where t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), and f(x) = x + 3.

Original entry on oeis.org

1, 3, 3, 9, 24, 9, 27, 141, 141, 27, 81, 726, 1410, 726, 81, 243, 3471, 11406, 11406, 3471, 243, 729, 15828, 81327, 136872, 81327, 15828, 729, 2187, 69873, 533259, 1390521, 1390521, 533259, 69873, 2187, 6561, 301362, 3295152, 12609198, 19467294, 12609198, 3295152, 301362, 6561, 19683, 1277619, 19489380, 105311556, 237144642, 237144642, 105311556, 19489380, 1277619, 19683
Offset: 0

Views

Author

Dale Gerdemann, Apr 17 2015

Keywords

Examples

			Array t(n,k) begins as:
    1,     3,       9,        27,         81,         243, ... A000244;
    3,    24,     141,       726,       3471,       15828, ...;
    9,   141,    1410,     11406,      81327,      533259, ...;
   27,   726,   11406,    136872,    1390521,    12609198, ...;
   81,  3471,   81327,   1390521,   19467294,   237144642, ...;
  243, 15828,  533259,  12609198,  237144642,  3794314272, ...;
  729, 69873, 3295152, 105311556, 2607816498, 53824862658, ...;
Triangle T(n,k) begins as:
     1;
     3,      3;
     9,     24,       9;
    27,    141,     141,       27;
    81,    726,    1410,      726,       81;
   243,   3471,   11406,    11406,     3471,      243;
   729,  15828,   81327,   136872,    81327,    15828,     729;
  2187,  69873,  533259,  1390521,  1390521,   533259,   69873,   2187;
  6561, 301362, 3295152, 12609198, 19467294, 12609198, 3295152, 301362, 6561;
		

Crossrefs

Similar sequences listed in A256890.

Programs

  • Mathematica
    f[n_]:= n+3;
    t[n_, k_]:= t[n,k]= If[n<0 || k<0, 0, If[n==0 && k==0, 1, f[k]*t[n-1,k] +f[n]*t[n,k-1]]];
    T[n_, k_]= t[n-k, k];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 22 2022 *)
  • PARI
    f(x) = x + 3;
    T(n, k) = t(n-k, k);
    t(n, m) = {if (!n && !m, return(1)); if (n < 0 || m < 0, return (0)); f(m)*t(n-1,m) + f(n)*t(n,m-1);}
    tabl(nn) = {for (n=0, nn, for (k=0, n, print1(T(n, k), ", ");); print(););} \\ Michel Marcus, Apr 23 2015
    
  • Sage
    def f(n): return n+3
    @CachedFunction
    def t(n,k):
        if (n<0 or k<0): return 0
        elif (n==0 and k==0): return 1
        else: return f(k)*t(n-1, k) + f(n)*t(n, k-1)
    def A257627(n,k): return t(n-k,k)
    flatten([[A257627(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 22 2022

Formula

T(n,k) = t(n-k, k), where t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), and f(x) = x + 3.
Sum_{k=0..n} T(n, k) = A001725(n+5).
From G. C. Greubel, Feb 22 2022: (Start)
t(k, n) = t(n, k).
T(n, n-k) = T(n, k).
t(0, n) = T(n, 0) = A000244(n). (End)