A257180 Triangle, read by rows, T(n,k) = t(n-k, k) where t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), and f(x) = x + 3.
1, 3, 3, 9, 24, 9, 27, 141, 141, 27, 81, 726, 1410, 726, 81, 243, 3471, 11406, 11406, 3471, 243, 729, 15828, 81327, 136872, 81327, 15828, 729, 2187, 69873, 533259, 1390521, 1390521, 533259, 69873, 2187, 6561, 301362, 3295152, 12609198, 19467294, 12609198, 3295152, 301362, 6561, 19683, 1277619, 19489380, 105311556, 237144642, 237144642, 105311556, 19489380, 1277619, 19683
Offset: 0
Examples
Array t(n,k) begins as: 1, 3, 9, 27, 81, 243, ... A000244; 3, 24, 141, 726, 3471, 15828, ...; 9, 141, 1410, 11406, 81327, 533259, ...; 27, 726, 11406, 136872, 1390521, 12609198, ...; 81, 3471, 81327, 1390521, 19467294, 237144642, ...; 243, 15828, 533259, 12609198, 237144642, 3794314272, ...; 729, 69873, 3295152, 105311556, 2607816498, 53824862658, ...; Triangle T(n,k) begins as: 1; 3, 3; 9, 24, 9; 27, 141, 141, 27; 81, 726, 1410, 726, 81; 243, 3471, 11406, 11406, 3471, 243; 729, 15828, 81327, 136872, 81327, 15828, 729; 2187, 69873, 533259, 1390521, 1390521, 533259, 69873, 2187; 6561, 301362, 3295152, 12609198, 19467294, 12609198, 3295152, 301362, 6561;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Mathematica
f[n_]:= n+3; t[n_, k_]:= t[n,k]= If[n<0 || k<0, 0, If[n==0 && k==0, 1, f[k]*t[n-1,k] +f[n]*t[n,k-1]]]; T[n_, k_]= t[n-k, k]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 22 2022 *)
-
PARI
f(x) = x + 3; T(n, k) = t(n-k, k); t(n, m) = {if (!n && !m, return(1)); if (n < 0 || m < 0, return (0)); f(m)*t(n-1,m) + f(n)*t(n,m-1);} tabl(nn) = {for (n=0, nn, for (k=0, n, print1(T(n, k), ", ");); print(););} \\ Michel Marcus, Apr 23 2015
-
Sage
def f(n): return n+3 @CachedFunction def t(n,k): if (n<0 or k<0): return 0 elif (n==0 and k==0): return 1 else: return f(k)*t(n-1, k) + f(n)*t(n, k-1) def A257627(n,k): return t(n-k,k) flatten([[A257627(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 22 2022
Formula
T(n,k) = t(n-k, k), where t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), and f(x) = x + 3.
Sum_{k=0..n} T(n, k) = A001725(n+5).
From G. C. Greubel, Feb 22 2022: (Start)
t(k, n) = t(n, k).
T(n, n-k) = T(n, k).
t(0, n) = T(n, 0) = A000244(n). (End)