cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257199 a(n) = n*(n+1)*(n+2)*(n^2+2*n+17)/120.

Original entry on oeis.org

1, 5, 16, 41, 91, 182, 336, 582, 957, 1507, 2288, 3367, 4823, 6748, 9248, 12444, 16473, 21489, 27664, 35189, 44275, 55154, 68080, 83330, 101205, 122031, 146160, 173971, 205871, 242296, 283712, 330616, 383537, 443037, 509712, 584193, 667147, 759278, 861328, 974078
Offset: 1

Views

Author

Luciano Ancora, Apr 18 2015

Keywords

Comments

Antidiagonal sums of the array of pyramidal numbers shown in Table 2 of Sardelis and Valahas paper (see A261720).
This is the case j = 3 of (n^2 + (j-1)*n + (j+1)^2 + 1)*binomial(n+j-1, j)/((j+1)*(j+2)), where j is the space dimension: a(n) = (n^2+2*n+17)*binomial(n+2,3)/20.
The sequence is the binomial transform of (1, 4, 7, 7, 4, 1, 0, 0, 0, ...). - Gary W. Adamson, Aug 26 2015

Crossrefs

For another version of the array, see A080851.

Programs

  • Magma
    [n*(n+1)*(n+2)*(n^2+2*n+17)/120: n in [1..40]]; // Vincenzo Librandi, Apr 18 2015
  • Mathematica
    Table[n (n + 1) (n + 2) (n^2 + 2n + 17)/120, {n, 40}]
    LinearRecurrence[{6,-15,20,-15,6,-1},{1,5,16,41,91,182},40] (* Harvey P. Dale, Mar 18 2018 *)

Formula

G.f.: x*(1 - x + x^2)/(1 - x)^6.