A257199 a(n) = n*(n+1)*(n+2)*(n^2+2*n+17)/120.
1, 5, 16, 41, 91, 182, 336, 582, 957, 1507, 2288, 3367, 4823, 6748, 9248, 12444, 16473, 21489, 27664, 35189, 44275, 55154, 68080, 83330, 101205, 122031, 146160, 173971, 205871, 242296, 283712, 330616, 383537, 443037, 509712, 584193, 667147, 759278, 861328, 974078
Offset: 1
Links
- D. A. Sardelis and T. M. Valahas, On Multidimensional Pythagorean Numbers, arXiv:0805.4070 [math.GM], 2008.
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Programs
-
Magma
[n*(n+1)*(n+2)*(n^2+2*n+17)/120: n in [1..40]]; // Vincenzo Librandi, Apr 18 2015
-
Mathematica
Table[n (n + 1) (n + 2) (n^2 + 2n + 17)/120, {n, 40}] LinearRecurrence[{6,-15,20,-15,6,-1},{1,5,16,41,91,182},40] (* Harvey P. Dale, Mar 18 2018 *)
Formula
G.f.: x*(1 - x + x^2)/(1 - x)^6.
Comments