A080851
Square array of pyramidal numbers, read by antidiagonals.
Original entry on oeis.org
1, 1, 3, 1, 4, 6, 1, 5, 10, 10, 1, 6, 14, 20, 15, 1, 7, 18, 30, 35, 21, 1, 8, 22, 40, 55, 56, 28, 1, 9, 26, 50, 75, 91, 84, 36, 1, 10, 30, 60, 95, 126, 140, 120, 45, 1, 11, 34, 70, 115, 161, 196, 204, 165, 55, 1, 12, 38, 80, 135, 196, 252, 288, 285, 220, 66, 1, 13, 42, 90, 155, 231, 308, 372, 405, 385, 286, 78
Offset: 0
Array begins (n>=0, k>=0):
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... A000217
1, 4, 10, 20, 35, 56, 84, 120, 165, 220, ... A000292
1, 5, 14, 30, 55, 91, 140, 204, 285, 385, ... A000330
1, 6, 18, 40, 75, 126, 196, 288, 405, 550, ... A002411
1, 7, 22, 50, 95, 161, 252, 372, 525, 715, ... A002412
1, 8, 26, 60, 115, 196, 308, 456, 645, 880, ... A002413
1, 9, 30, 70, 135, 231, 364, 540, 765, 1045, ... A002414
1, 10, 34, 80, 155, 266, 420, 624, 885, 1210, ... A007584
See
A257199 for another version of this array.
-
vector(vector(poly_coeff(Taylor((1+kx)/(1-x)^4,x,11),x,n),n,0,11),k,-1,10) VECTOR(VECTOR(comb(k+2,2)+comb(k+2,3)n, k, 0, 11), n, 0, 11)
-
A080851 := proc(n,k)
binomial(k+3,3)+(n-1)*binomial(k+2,3) ;
end proc:
seq( seq(A080851(d-k,k),k=0..d),d=0..12) ; # R. J. Mathar, Oct 01 2021
-
pyramidalFigurative[ ngon_, rank_] := (3 rank^2 + rank^3 (ngon - 2) - rank (ngon - 5))/6; Table[ pyramidalFigurative[n-k-1, k], {n, 4, 15}, {k, n-3}] // Flatten (* Robert G. Wilson v, Sep 15 2015 *)
A185508
Third accumulation array, T, of the natural number array A000027, by antidiagonals.
Original entry on oeis.org
1, 5, 6, 16, 29, 21, 41, 89, 99, 56, 91, 219, 295, 259, 126, 182, 469, 705, 755, 574, 252, 336, 910, 1470, 1765, 1645, 1134, 462, 582, 1638, 2786, 3605, 3780, 3206, 2058, 792, 957, 2778, 4914, 6706, 7595, 7266, 5754, 3498, 1287, 1507, 4488, 8190, 11634, 13916, 14406, 12894, 9690, 5643, 2002, 2288, 6963, 13035, 19110, 23814, 26068, 25284, 21510, 15510, 8723, 3003, 3367, 10439, 19965, 30030, 38640, 44100
Offset: 1
Northwest corner:
1 5 16 41 91 182
6 29 89 219 469 910
21 99 295 705 1470 2786
56 259 755 1765 3605 6706
-
h[n_,k_]:=k(k+1)(k+2)n(n+1)(n+2)*(4n^2+(5k+23)n+4k^2+3k+41)/2880;
TableForm[Table[h[n,k],{n,1,10},{k,1,15}]]
Table[h[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
-
{h(n,k) = k*(k+1)*(k+2)*n*(n+1)*(n+2)*(4*n^2+(5*k+23)*n +4*k^2 +3*k + 41)/2880}; for(n=1,10, for(k=1,n, print1(h(k, n-k+1), ", "))) \\ G. C. Greubel, Nov 23 2017
A257200
a(n) = n*(n+1)*(n+2)*(n+3)*(n^2+3*n+26)/720.
Original entry on oeis.org
1, 6, 22, 63, 154, 336, 672, 1254, 2211, 3718, 6006, 9373, 14196, 20944, 30192, 42636, 59109, 80598, 108262, 143451, 187726, 242880, 310960, 394290, 495495, 617526, 763686, 937657, 1143528, 1385824, 1669536, 2000152, 2383689, 2826726, 3336438, 3920631, 4587778, 5347056, 6208384, 7182462
Offset: 1
Array in Comments begins:
1, 5, 15, 35, 70, 126, 210, 330, ...
1, 6, 20, 50, 105, 196, 336, 540, ...
1, 7, 25, 65, 140, 266, 462, 750, ...
1, 8, 30, 80, 175, 336, 588, 960, ...
1, 9, 35, 95, 210, 406, 714, 1170, ...
1, 10, 40, 110, 245, 476, 840, 1380, ...
- D. A. Sardelis and T. M. Valahas, On Multidimensional Pythagorean Numbers, arXiv:0805.4070 [math.GM], 2008.
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
See
A080852 for another version of the array.
-
[n*(n+1)*(n+2)*(n+3)*(n^2+3*n+26)/720: n in [1..40]]; // Vincenzo Librandi, Apr 18 2015
-
Table[n (n + 1) (n + 2) (n + 3) (n^2 + 3n + 26)/720, {n, 40}]
-
first(m)=vector(m,i,i*(i+1)*(i+2)*(i+3)*(i^2+3*i+26)/720) \\ Anders Hellström, Aug 26 2015
-
Vec(x*(-1 + x - x^2)/(-1 + x)^7 + O(x^40)) \\ Michel Marcus, Aug 27 2015
A257201
a(n) = n*(n+1)*(n+2)*(n+3)*(n+4)*(n^2+4*n+37)/5040.
Original entry on oeis.org
1, 7, 29, 92, 246, 582, 1254, 2508, 4719, 8437, 14443, 23816, 38012, 58956, 89148, 131784, 190893, 271491, 379753, 523204, 710930, 953810, 1264770, 1659060, 2154555, 2772081, 3535767, 4473424, 5616952, 7002776, 8672312, 10672464, 13056153, 15882879, 19219317, 23139948, 27727726, 33074782, 39283166, 46465628
Offset: 1
Array in Comments begins:
1, 6, 21, 56, 126, 252, 462, 792, 1287, 2002, ...
1, 7, 27, 77, 182, 378, 714, 1254, 2079, 3289, ...
1, 8, 33, 98, 238, 504, 966, 1716, 2871, 4576, ...
1, 9, 39, 119, 294, 630, 1218, 2178, 3663, 5863, ...
1, 10, 45, 140, 350, 756, 1470, 2640, 4455, 7150, ...
1, 11, 51, 161, 406, 882, 1722, 3102, 5247, 8437, ...
1, 12, 57, 182, 462, 1008, 1974, 3564, 6039, 9724, ...
...
- D. A. Sardelis and T. M. Valahas, On Multidimensional Pythagorean Numbers, arXiv:0805.4070 [math.GM], 2008.
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
-
[n*(n+1)*(n+2)*(n+3)*(n+4)*(n^2+4*n+37)/5040: n in [1..40]]; // Vincenzo Librandi, Apr 18 2015
-
Table[n (n + 1) (n + 2) (n + 3) (n + 4) (n^2 + 4n + 37)/5040, {n, 40}]
Showing 1-4 of 4 results.
Comments