cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257222 Numbers that have at least one divisor containing the digit 5 in base 10.

Original entry on oeis.org

5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 65, 70, 75, 80, 85, 90, 95, 100, 102, 104, 105, 106, 108, 110, 112, 114, 115, 116, 118, 120, 125, 130, 135, 140, 145, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 162, 165
Offset: 1

Views

Author

Jaroslav Krizek, May 05 2015

Keywords

Comments

Numbers k whose concatenation of divisors A037278(k), A176558(k), A243360(k) or A256824(k) contains a digit 5.
Sequences of numbers k whose concatenation of divisors contains a digit j in base 10 for 0 <= j <= 9: A209932 for j = 0, A000027 for j = 1, A257219 for j = 2, A257220 for j = 3, A257221 for j = 4, A257222 for j = 5, A257223 for j = 6, A257224 for j = 7, A257225 for j = 8, A257226 for j = 9.

Examples

			20 is in sequence because the list of divisors of 20: (1, 2, 4, 5, 10, 20) contains digit 5.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1000] | [5] subset Setseq(Set(Sort(&cat[Intseq(d): d in Divisors(n)])))];
    
  • Mathematica
    Select[Range@108, Part[Plus @@ DigitCount@ Divisors@ #, 5] > 0 &]
    Select[Range[200],Max[DigitCount[Divisors[#],10,5]]>0&] (* Harvey P. Dale, Sep 15 2018 *)
  • PARI
    is(n)=fordiv(n, d, if(setsearch(Set(digits(d)), 5), return(1))); 0
    
  • Perl
    use ntheory ":all"; for my $n (1..1000) { say $n if scalar(grep {/5/} divisors($n)) } # Dana Jacobsen, May 07 2015
    
  • Perl
    use ntheory ":all"; my @a257222 = grep { scalar(grep {/5/} divisors($)) } 1..1000; # _Dana Jacobsen, May 07 2015
  • Python
    from sympy import divisors
    A257222_list = [n for n in range(1,10**3) if '5' in set().union(*(set(str(d)) for d in divisors(n,generator=True)))] # Chai Wah Wu, May 06 2015
    

Formula

a(n) ~ n.

Extensions

Mathematica and PARI programs with assistance from Michael De Vlieger and Charles R Greathouse IV, respectively.