cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257286 a(n) = 5*6^n - 4*5^n.

Original entry on oeis.org

1, 10, 80, 580, 3980, 26380, 170780, 1087180, 6835580, 42575980, 263268380, 1618672780, 9907349180, 60420657580, 367406757980, 2228854610380, 13495197974780, 81581539411180, 492540994279580, 2970504754739980, 17899322473752380
Offset: 0

Views

Author

M. F. Hasler, May 03 2015

Keywords

Comments

First differences of 6^n - 5^n = A005062.
a(n-1) is the number of numbers with n digits having the largest digit equal to 5. Or, equivalently, number of n-letter words over a 6-letter alphabet {a,b,c,d,e,f}, which must not start with the first letter of the alphabet, and in which the last letter of the alphabet must appear.

Crossrefs

Cf. A005062.
Coincides with A125373 only for the first terms.

Programs

  • Magma
    [5*6^n-4*5^n: n in [0..20]]; // Vincenzo Librandi, May 04 2015
  • Mathematica
    Table[5 6^n - 4 5^n, {n, 0, 30}] (* Vincenzo Librandi, May 04 2015 *)
  • PARI
    a(n)=5*6^n-4*5^n
    

Formula

a(n) = 11 a(n-1) - 30 a(n-2).
G.f.: (1-x)/((1-5*x)*(1-6*x)). - Vincenzo Librandi, May 04 2015
E.g.f.: exp(5*x)*(5*exp(x) - 4). - Stefano Spezia, Nov 15 2023