A088924
Number of "9ish numbers" with n digits.
Original entry on oeis.org
1, 18, 252, 3168, 37512, 427608, 4748472, 51736248, 555626232, 5900636088, 62105724792, 648951523128, 6740563708152, 69665073373368, 716985660360312, 7352870943242808, 75175838489185272, 766582546402667448
Offset: 1
a(2) = 18 because 19, 29, 39, 49, 59, 69, 79, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98 and 99 are the eighteen two-digit 9ish numbers.
-
[9*10^(n-1) - 8*9^(n-1): n in [1..30]]; // Vincenzo Librandi, May 04 2015
-
A088924:=n->9*10^(n-1) - 8*9^(n-1); seq(A088924(n), n=1..30); # Wesley Ivan Hurt, May 15 2014
-
Series[(x (1 - x))/(1 - 19 x + 90 x^2), {x, 0, 10}] (* Bobby Milazzo, May 02 2014 *)
Table[9*10^(n - 1) - 8*9^(n - 1), {n, 30}] (* Wesley Ivan Hurt, May 15 2014 *)
-
a(n)=9*10^n-8*9^n \\ M. F. Hasler, May 04 2015
-
def A088924(n): return 9*10**(n-1)-8*9**(n-1) # Chai Wah Wu, Jan 27 2025
A255463
a(n) = 3*4^n - 2*3^n.
Original entry on oeis.org
1, 6, 30, 138, 606, 2586, 10830, 44778, 183486, 747066, 3027630, 12228618, 49268766, 198137946, 795740430, 3192527658, 12798808446, 51281327226, 205383589230, 822309197898, 3291561314526, 13173218826906, 52713796014030, 210917946175338, 843860071059006, 3376005143308986, 13505715150454830
Offset: 0
- Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata, arXiv:1503.01796 [math.CO], 2015; see also the Accompanying Maple Package.
- Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.04249 [math.CO], 2015.
- N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb. 05 2015: Part 1, Part 2
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015
- Index entries for sequences related to cellular automata
- Index entries for linear recurrences with constant coefficients, signature (7,-12).
A257285
a(n) = 4*5^n - 3*4^n.
Original entry on oeis.org
1, 8, 52, 308, 1732, 9428, 50212, 263348, 1365892, 7026068, 35916772, 182729588, 926230852, 4681485908, 23608756132, 118849087028, 597466660612, 3000218204948, 15052630632292, 75469311591668, 378171191679172, 1894154493279188, 9483966605929252
Offset: 0
A257287
a(n) = 6*7^n - 5*6^n.
Original entry on oeis.org
1, 12, 114, 978, 7926, 61962, 472614, 3541578, 26190726, 191733162, 1392520614, 10049975178, 72163811526, 516030592362, 3677517616614, 26134444136778, 185292033880326, 1311149786699562, 9262681804120614, 65346572412186378
Offset: 0
-
[6*7^n-5*6^n: n in [0..30]]; // Vincenzo Librandi, May 04 2015
-
Table[6 7^n - 5 6^n, {n, 0, 30}] (* Vincenzo Librandi, May 04 2015 *)
LinearRecurrence[{13,-42},{1,12},20] (* Harvey P. Dale, Dec 10 2023 *)
-
a(n)=6*7^n-5*6^n
A257289
a(n) = 8*9^n - 7*8^n.
Original entry on oeis.org
1, 16, 200, 2248, 23816, 243016, 2416520, 23583688, 226933256, 2159839816, 20378082440, 190918934728, 1778399954696, 16486635929416, 152228014061960, 1400838452135368, 12853836673840136, 117654854901535816, 1074656292809619080, 9798007424852945608
Offset: 0
-
[8*9^n-7*8^n: n in [0..20]]; // Vincenzo Librandi, May 04 2015
-
Table[8 9^n - 7 8^n, {n, 0, 20}] (* Vincenzo Librandi, May 04 2015 *)
LinearRecurrence[{17,-72},{1,16},30] (* Harvey P. Dale, May 26 2019 *)
-
a(n)=8*9^n-7*8^n
-
[8*9^n-7*8^n for n in (0..20)] # Bruno Berselli, May 04 2015
A125373
Number of base 10 circular n-digit numbers with adjacent digits differing by 5 or less.
Original entry on oeis.org
1, 10, 80, 580, 4660, 37960, 311378, 2559658, 21057948, 173287588, 1426133270, 11737272106, 96600478510, 795047628502, 6543462720560, 53854541701240, 443238127915788, 3647975524214452, 30023874009147704, 247105006940966092
Offset: 0
-
LinearRecurrence[{11,-21,-19,34,8,-15,-1,2},{1,10,80,580,4660,37960,311378,2559658,21057948},30] (* Harvey P. Dale, May 14 2018 *)
Showing 1-6 of 6 results.
Comments