A005061
a(n) = 4^n - 3^n.
Original entry on oeis.org
0, 1, 7, 37, 175, 781, 3367, 14197, 58975, 242461, 989527, 4017157, 16245775, 65514541, 263652487, 1059392917, 4251920575, 17050729021, 68332056247, 273715645477, 1096024843375, 4387586157901, 17560804984807, 70274600998837, 281192547174175, 1125052618233181
Offset: 0
G.f. = x + 7*x^2 + 37*x^3 + 175*x^4 + 781*x^5 + 3367*x^6 + 14197*x^7 + ...
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- David Applegate, Marc LeBrun, and N. J. A. Sloane, Dismal Arithmetic, arXiv:1107.1130 [math.NT], 2011. [Note: we have now changed the name from "dismal arithmetic" to "lunar arithmetic" - the old name was too depressing]
- Dominique Désérable, Versatile Topology for Two-Dimensional Cellular Automata, Advances in Cellular Automata, Emergence, Complexity and Computation (ECC Vol 52) Springer, Cham (2025), Ch. 6, pp. 151-186.
- John Elias, Illustration of initial terms: Unfolded Sierpinski triangle or 3-branches tree in square configuration
- Samuele Giraudo, Pluriassociative algebras I: The pluriassociative operad, arXiv:1603.01040 [math.CO], 2016.
- Vladeta Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (Russian, translated in Discrete Mathematics and Applications, 9, (1999), no. 6).
- Eric Weisstein's World of Mathematics, Power Fractional Parts
- Index entries for linear recurrences with constant coefficients, signature (7,-12).
- Index entries for sequences related to dismal (or lunar) arithmetic
Array column
A047969(n-1, 3), or triangle's subdiagonal
A047969(n+2, n-1), for n >= 1.
-
List([0..10^2], n->4*n - 3^n); # Muniru A Asiru, Feb 06 2018
-
[4^n - 3^n: n in [0..25]]; // Vincenzo Librandi, Jun 03 2011
-
seq(4^n - 3^n, n=0..10^2); # Muniru A Asiru, Feb 06 2018
-
Table[4^n - 3^n, {n, 0, 20}] (* Vladimir Joseph Stephan Orlovsky, Dec 21 2008 *)
LinearRecurrence[{7,-12},{0,1},30] (* Harvey P. Dale, May 04 2012 *)
Table[Numerator[1-(3/4)^n],{n,0,20}] (* see link Wolfram Mathworld - Fred Daniel Kline, Feb 05 2018 *)
-
a(n)=1<<(n+n)-3^n \\ Charles R Greathouse IV, Jun 16 2011
-
def a(n): return 4**n - 3**n
print([a(n) for n in range(23)]) # Michael S. Branicky, Sep 01 2021
A257286
a(n) = 5*6^n - 4*5^n.
Original entry on oeis.org
1, 10, 80, 580, 3980, 26380, 170780, 1087180, 6835580, 42575980, 263268380, 1618672780, 9907349180, 60420657580, 367406757980, 2228854610380, 13495197974780, 81581539411180, 492540994279580, 2970504754739980, 17899322473752380
Offset: 0
Coincides with
A125373 only for the first terms.
A257285
a(n) = 4*5^n - 3*4^n.
Original entry on oeis.org
1, 8, 52, 308, 1732, 9428, 50212, 263348, 1365892, 7026068, 35916772, 182729588, 926230852, 4681485908, 23608756132, 118849087028, 597466660612, 3000218204948, 15052630632292, 75469311591668, 378171191679172, 1894154493279188, 9483966605929252
Offset: 0
A257287
a(n) = 6*7^n - 5*6^n.
Original entry on oeis.org
1, 12, 114, 978, 7926, 61962, 472614, 3541578, 26190726, 191733162, 1392520614, 10049975178, 72163811526, 516030592362, 3677517616614, 26134444136778, 185292033880326, 1311149786699562, 9262681804120614, 65346572412186378
Offset: 0
-
[6*7^n-5*6^n: n in [0..30]]; // Vincenzo Librandi, May 04 2015
-
Table[6 7^n - 5 6^n, {n, 0, 30}] (* Vincenzo Librandi, May 04 2015 *)
LinearRecurrence[{13,-42},{1,12},20] (* Harvey P. Dale, Dec 10 2023 *)
-
a(n)=6*7^n-5*6^n
A257289
a(n) = 8*9^n - 7*8^n.
Original entry on oeis.org
1, 16, 200, 2248, 23816, 243016, 2416520, 23583688, 226933256, 2159839816, 20378082440, 190918934728, 1778399954696, 16486635929416, 152228014061960, 1400838452135368, 12853836673840136, 117654854901535816, 1074656292809619080, 9798007424852945608
Offset: 0
-
[8*9^n-7*8^n: n in [0..20]]; // Vincenzo Librandi, May 04 2015
-
Table[8 9^n - 7 8^n, {n, 0, 20}] (* Vincenzo Librandi, May 04 2015 *)
LinearRecurrence[{17,-72},{1,16},30] (* Harvey P. Dale, May 26 2019 *)
-
a(n)=8*9^n-7*8^n
-
[8*9^n-7*8^n for n in (0..20)] # Bruno Berselli, May 04 2015
A255462
Number of ON cells after n generations of the odd-rule cellular automaton defined by OddRule 365 when started with a single ON cell.
Original entry on oeis.org
1, 6, 6, 30, 6, 36, 30, 138, 6, 36, 36, 180, 30, 180, 138, 606, 6, 36, 36, 180, 36, 216, 180, 828, 30, 180, 180, 900, 138, 828, 606, 2586, 6, 36, 36, 180, 36, 216, 180, 828, 36, 216, 216, 1080, 180, 1080, 828, 3636, 30, 180, 180, 900, 180, 1080, 900, 4140, 138, 828, 828, 4140
Offset: 0
From _Omar E. Pol_, Sep 08 2016: (Start)
Written as an irregular triangle in which the row lengths are the terms of A011782 the sequence begins:
1;
6;
6, 30;
6, 36, 30, 138;
6, 36, 36, 180, 30, 180, 138, 606;
6, 36, 36, 180, 36, 216, 180, 828, 30, 180, 180, 900, 138, 828, 606, 2586;
...
Right border gives A255463. (End)
- Paul Tek, Table of n, a(n) for n = 0..10000
- Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata, arXiv:1503.01796 [math.CO], 2015; see also the Accompanying Maple Package.
- Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.04249 [math.CO], 2015.
- N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb. 05 2015: Part 1, Part 2
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015
- N. J. A. Sloane, Illustration of generations 0 to 15
- N. J. A. Sloane, Illustration of generations 0 to 35
- N. J. A. Sloane, Illustration of generation 7
- N. J. A. Sloane, Illustration of generation 15
- N. J. A. Sloane, Mathematica notebook to generate this cellular automaton
- Index entries for sequences related to cellular automata
-
(* See Mathematica notebook in link *)
(* or *)
A255462[n_] := Total[CellularAutomaton[{42, {2, {{0, 1, 1}, {1, 1, 0}, {1, 0, 1}}}, {1, 1}}, {{{1}}, 0}, {{{n}}}], 2]; Array[A255462, 60, 0] (* JungHwan Min, Sep 06 2016 *)
A255462L[n_] := Total[#, 2] & /@ CellularAutomaton[{42, {2, {{0, 1, 1}, {1, 1, 0}, {1, 0, 1}}}, {1, 1}}, {{{1}}, 0}, n]; A255462L[59] (* JungHwan Min, Sep 06 2016 *)
A210381
Triangle by rows, derived from the beheaded Pascal's triangle, A074909.
Original entry on oeis.org
1, 0, 2, 0, 1, 3, 0, 1, 3, 4, 0, 1, 4, 6, 5, 0, 1, 5, 10, 10, 6, 0, 1, 6, 15, 20, 15, 7, 0, 1, 7, 21, 35, 35, 21, 8, 0, 1, 8, 28, 56, 70, 56, 28, 9, 0, 1, 9, 36, 84, 126, 126, 84, 36, 10, 0, 1, 10, 45, 120, 210, 252, 210, 120, 45, 11
Offset: 0
{1},
{0, 2},
{0, 1, 3},
{0, 1, 3, 4},
{0, 1, 4, 6, 5},
{0, 1, 5, 10, 10, 6},
{0, 1, 6, 15, 20, 15, 7},
{0, 1, 7, 21, 35, 35, 21, 8},
{0, 1, 8, 28, 56, 70, 56, 28, 9},
{0, 1, 9, 36, 84, 126, 126, 84, 36, 10},
{0, 1, 10, 45, 120, 210, 252, 210, 120, 45, 11}
...
- Konrad Knopp, Elements of the Theory of Functions, Dover, 1952,pp 117-118.
-
t2[n_, m_] = If[m - 1 <= n, Binomial[n, m - 1], 0];
O2 = Table[Table[If[n == m, t2[n, m] + 1, t2[n, m]], {m, 0, n}], {n, 0, 10}];
Flatten[O2]
Showing 1-7 of 7 results.
Comments