cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A005061 a(n) = 4^n - 3^n.

Original entry on oeis.org

0, 1, 7, 37, 175, 781, 3367, 14197, 58975, 242461, 989527, 4017157, 16245775, 65514541, 263652487, 1059392917, 4251920575, 17050729021, 68332056247, 273715645477, 1096024843375, 4387586157901, 17560804984807, 70274600998837, 281192547174175, 1125052618233181
Offset: 0

Views

Author

Keywords

Comments

Number of 2 X n binary arrays with a path of adjacent 1's from top row to bottom row, see A359576. - R. H. Hardin, Mar 21 2002
Number of binary vectors (x_1, x_2, ..., x_{2n}) such that in at least one of the disjoint pairs (x_1, x_2), (x_3, x_4), ..., (x_{2n-1}, x_{2n}) both x_{2i-1} and x_{2i} are both 1. Equivalently, number of solutions (x_1, ..., x_n) to the equation x_1*x_2 + x_3*x_4 + x_5*x_6 + ... +x_{2n-1}*x_{2n} = 1 in base-2 lunar arithmetic. - N. J. A. Sloane, Apr 23 2011
a(n)/4^n is the probability that two randomly selected (with replacement) subsets of [n] will have at least one element in common if the probability of selection is equal for all subsets. - Geoffrey Critzer, May 09 2009
This sequence is also the second column of the Sheffer triangle A143495 (3-restricted Stirling2 numbers). (See the e.g.f. given below.) - Wolfdieter Lang, Oct 08 2011
Also, the number of numbers with at most n digits whose largest digit equals 3. See A255463 for the first differences (i.e., ...with exactly n digits...). - M. F. Hasler, May 03 2015
If 2^k | n then a(2^k) | a(n). - Bernard Schott, Oct 08 2020
a(n) is the number of ordered n-tuples with elements from {0,1,2,3} in which any of these elements, say 0, appears at least once. For example, a(2)=7 since 01,10,02,20,03,30,00 are the ordered 2-tuples that contain 0. - Enrique Navarrete, Apr 05 2021
a(n) is the number of n-digit numbers whose smallest decimal digit is 6. - Stefano Spezia, Nov 15 2023

Examples

			G.f. = x + 7*x^2 + 37*x^3 + 175*x^4 + 781*x^5 + 3367*x^6 + 14197*x^7 + ...
		

Crossrefs

Cf. A001047, A002250, A005060, A005062, A143495, A255463 (first differences), A359576.
Array column A047969(n-1, 3), or triangle's subdiagonal A047969(n+2, n-1), for n >= 1.

Programs

Formula

a(n) = 4*a(n-1) + 3^(n-1) for n>=1. - Xavier Acloque, Oct 20 2003
Binomial transform of A001047. - Ross La Haye, Sep 17 2005
From Mohammad K. Azarian, Jan 14 2009: (Start)
G.f.: 1/(1-4*x)-1/(1-3*x).
E.g.f.: exp(4*x)-exp(3*x). (End)
a(n) = 2^n * Sum_{i=0...n} binomial(n,i)*(2^i-1)/2^i. - Geoffrey Critzer, May 09 2009
a(n) = 7*a(n-1) - 12*a(n-2) for n>=2. - Bruno Berselli, Jan 25 2011
From Joe Slater, Jan 15 2017: (Start)
a(n) = 3*a(n-1) + 4^(n-1) for n>=0.
a(n+1) = Sum_{k=0..n} 4^(n-k) * 3^k. (End)
a(n) = -a(-n) * 12^n for all n in Z. - Michael Somos, Jan 22 2017

A257286 a(n) = 5*6^n - 4*5^n.

Original entry on oeis.org

1, 10, 80, 580, 3980, 26380, 170780, 1087180, 6835580, 42575980, 263268380, 1618672780, 9907349180, 60420657580, 367406757980, 2228854610380, 13495197974780, 81581539411180, 492540994279580, 2970504754739980, 17899322473752380
Offset: 0

Views

Author

M. F. Hasler, May 03 2015

Keywords

Comments

First differences of 6^n - 5^n = A005062.
a(n-1) is the number of numbers with n digits having the largest digit equal to 5. Or, equivalently, number of n-letter words over a 6-letter alphabet {a,b,c,d,e,f}, which must not start with the first letter of the alphabet, and in which the last letter of the alphabet must appear.

Crossrefs

Cf. A005062.
Coincides with A125373 only for the first terms.

Programs

  • Magma
    [5*6^n-4*5^n: n in [0..20]]; // Vincenzo Librandi, May 04 2015
  • Mathematica
    Table[5 6^n - 4 5^n, {n, 0, 30}] (* Vincenzo Librandi, May 04 2015 *)
  • PARI
    a(n)=5*6^n-4*5^n
    

Formula

a(n) = 11 a(n-1) - 30 a(n-2).
G.f.: (1-x)/((1-5*x)*(1-6*x)). - Vincenzo Librandi, May 04 2015
E.g.f.: exp(5*x)*(5*exp(x) - 4). - Stefano Spezia, Nov 15 2023

A257285 a(n) = 4*5^n - 3*4^n.

Original entry on oeis.org

1, 8, 52, 308, 1732, 9428, 50212, 263348, 1365892, 7026068, 35916772, 182729588, 926230852, 4681485908, 23608756132, 118849087028, 597466660612, 3000218204948, 15052630632292, 75469311591668, 378171191679172, 1894154493279188, 9483966605929252
Offset: 0

Views

Author

M. F. Hasler, May 03 2015

Keywords

Comments

First differences of 5^n - 4^n = A005060.
a(n-1) is the number of numbers with n digits having the largest digit equal to 4. Note that this is independent of the base b>4. Equivalently, number of n-letter words over a 5-letter alphabet {a,b,c,d,e}, which must not start with the first letter of the alphabet, and in which the last letter of the alphabet must appear.

Crossrefs

Programs

  • Magma
    [4*5^n-3*4^n: n in [0..30]]; // Vincenzo Librandi, May 04 2015
  • Mathematica
    Table[4 5^n - 3 4^n, {n, 0, 30}] (* Vincenzo Librandi, May 04 2015 *)
  • PARI
    a(n)=4*5^n-3*4^n
    

Formula

From Vincenzo Librandi, May 04 2015: (Start)
G.f.: (1-x)/((1-4*x)*(1-5*x)).
a(n) = 9*a(n-1) - 20*a(n-2). - (End)
E.g.f.: exp(4*x)*(4*exp(x) - 3). - Stefano Spezia, Nov 15 2023

A257287 a(n) = 6*7^n - 5*6^n.

Original entry on oeis.org

1, 12, 114, 978, 7926, 61962, 472614, 3541578, 26190726, 191733162, 1392520614, 10049975178, 72163811526, 516030592362, 3677517616614, 26134444136778, 185292033880326, 1311149786699562, 9262681804120614, 65346572412186378
Offset: 0

Views

Author

M. F. Hasler, May 03 2015

Keywords

Comments

First differences of 7^n - 6^n = A016169.
a(n-1) is the number of numbers with n digits having the largest digit equal to 6. Note that this is independent of the base b > 6.
Equivalently, number of n-letter words over a 7-letter alphabet {a,b,c,d,e,f,g}, which must not start with the first letter of the alphabet, and in which the last letter of the alphabet must appear.

Crossrefs

Programs

  • Magma
    [6*7^n-5*6^n: n in [0..30]]; // Vincenzo Librandi, May 04 2015
  • Mathematica
    Table[6 7^n - 5 6^n, {n, 0, 30}] (* Vincenzo Librandi, May 04 2015 *)
    LinearRecurrence[{13,-42},{1,12},20] (* Harvey P. Dale, Dec 10 2023 *)
  • PARI
    a(n)=6*7^n-5*6^n
    

Formula

From Vincenzo Librandi, May 04 2015: (Start)
G.f.: (1-x)/((1-6*x)*(1-7*x)).
a(n) = 13*a(n-1) - 42*a(n-2). (End)
E.g.f.: exp(6*x)*(6*exp(x) - 5). - Stefano Spezia, Nov 15 2023

A257289 a(n) = 8*9^n - 7*8^n.

Original entry on oeis.org

1, 16, 200, 2248, 23816, 243016, 2416520, 23583688, 226933256, 2159839816, 20378082440, 190918934728, 1778399954696, 16486635929416, 152228014061960, 1400838452135368, 12853836673840136, 117654854901535816, 1074656292809619080, 9798007424852945608
Offset: 0

Views

Author

M. F. Hasler, May 03 2015

Keywords

Comments

First differences of 9^n - 8^n = A016185.
a(n-1) is the number of numbers with n digits having the largest digit equal to 8. Note that this is independent of the base b > 8.
Equivalently, number of n-letter words over a 9-letter alphabet, which must not start with the last letter of the alphabet, and in which the first letter of the alphabet must appear.

Crossrefs

Programs

  • Magma
    [8*9^n-7*8^n: n in [0..20]]; // Vincenzo Librandi, May 04 2015
    
  • Mathematica
    Table[8 9^n - 7 8^n, {n, 0, 20}] (* Vincenzo Librandi, May 04 2015 *)
    LinearRecurrence[{17,-72},{1,16},30] (* Harvey P. Dale, May 26 2019 *)
  • PARI
    a(n)=8*9^n-7*8^n
    
  • Sage
    [8*9^n-7*8^n for n in (0..20)] # Bruno Berselli, May 04 2015

Formula

G.f.: (1-x)/((1-8*x)*(1-9*x)). - Vincenzo Librandi, May 04 2015
E.g.f.: exp(8*x)*(8*exp(x) - 7). - Stefano Spezia, Nov 15 2023

A255462 Number of ON cells after n generations of the odd-rule cellular automaton defined by OddRule 365 when started with a single ON cell.

Original entry on oeis.org

1, 6, 6, 30, 6, 36, 30, 138, 6, 36, 36, 180, 30, 180, 138, 606, 6, 36, 36, 180, 36, 216, 180, 828, 30, 180, 180, 900, 138, 828, 606, 2586, 6, 36, 36, 180, 36, 216, 180, 828, 36, 216, 216, 1080, 180, 1080, 828, 3636, 30, 180, 180, 900, 180, 1080, 900, 4140, 138, 828, 828, 4140
Offset: 0

Views

Author

Keywords

Examples

			From _Omar E. Pol_, Sep 08 2016: (Start)
Written as an irregular triangle in which the row lengths are the terms of A011782 the sequence begins:
1;
6;
6, 30;
6, 36, 30, 138;
6, 36, 36, 180, 30, 180, 138, 606;
6, 36, 36, 180, 36, 216, 180, 828, 30, 180, 180, 900, 138, 828, 606, 2586;
...
Right border gives A255463. (End)
		

Crossrefs

Run length transform of A255463.

Programs

  • Mathematica
    (* See Mathematica notebook in link *)
    (* or *)
    A255462[n_] := Total[CellularAutomaton[{42, {2, {{0, 1, 1}, {1, 1, 0}, {1, 0, 1}}}, {1, 1}}, {{{1}}, 0}, {{{n}}}], 2]; Array[A255462, 60, 0] (* JungHwan Min, Sep 06 2016 *)
    A255462L[n_] := Total[#, 2] & /@ CellularAutomaton[{42, {2, {{0, 1, 1}, {1, 1, 0}, {1, 0, 1}}}, {1, 1}}, {{{1}}, 0}, n]; A255462L[59] (* JungHwan Min, Sep 06 2016 *)

Formula

It follows from Theorem 3 of the Fredkin.pdf (2015) paper that this satisfies the recurrence a(2t)=a(t), a(4t+1)=6*a(t), and a(4t+3)=7*a(2t+1)-12*a(t) for t>0, with a(0)=1. - N. J. A. Sloane, Mar 10 2015

A210381 Triangle by rows, derived from the beheaded Pascal's triangle, A074909.

Original entry on oeis.org

1, 0, 2, 0, 1, 3, 0, 1, 3, 4, 0, 1, 4, 6, 5, 0, 1, 5, 10, 10, 6, 0, 1, 6, 15, 20, 15, 7, 0, 1, 7, 21, 35, 35, 21, 8, 0, 1, 8, 28, 56, 70, 56, 28, 9, 0, 1, 9, 36, 84, 126, 126, 84, 36, 10, 0, 1, 10, 45, 120, 210, 252, 210, 120, 45, 11
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Mar 20 2012

Keywords

Comments

Row sums of the triangle = 2^n.
Let the triangle = an infinite lower triangular matrix, M. Then M * The Bernoulli numbers, A027641/A027642 as a vector V = [1, -1, 0, 0, 0,...]. M * the Bernoulli sequence variant starting [1, 1/2, 1/6,...] = [1, 1, 1,...]. M * 2^n: [1, 2, 4, 8,...] = A027649. M * 3^n = A255463; while M * [1, 2, 3,...] = A047859, and M * A027649 = A027650.
Row sums of powers of the triangle generate the Poly-Bernoulli number sequences shown in the array of A099594. - Gary W. Adamson, Mar 21 2012
Triangle T(n,k) given by (0, 1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 25 2012

Examples

			{1},
{0, 2},
{0, 1, 3},
{0, 1, 3, 4},
{0, 1, 4, 6, 5},
{0, 1, 5, 10, 10, 6},
{0, 1, 6, 15, 20, 15, 7},
{0, 1, 7, 21, 35, 35, 21, 8},
{0, 1, 8, 28, 56, 70, 56, 28, 9},
{0, 1, 9, 36, 84, 126, 126, 84, 36, 10},
{0, 1, 10, 45, 120, 210, 252, 210, 120, 45, 11}
...
		

References

  • Konrad Knopp, Elements of the Theory of Functions, Dover, 1952,pp 117-118.

Crossrefs

Programs

  • Mathematica
    t2[n_, m_] = If[m - 1 <= n, Binomial[n, m - 1], 0];
    O2 = Table[Table[If[n == m, t2[n, m] + 1, t2[n, m]], {m, 0, n}], {n, 0, 10}];
    Flatten[O2]

Formula

Partial differences of the beheaded Pascal's triangle A074909 starting from the top, by columns.
G.f.: (1-x)/(1-x-2*y*x+y*x^2+y^2*x^2). - Philippe Deléham, Mar 25 2012
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1) - T(n-2,k-2), T(0,0) = T(2,1) = 1, T(1,0) = T(2,0) = 0, T(1,1) = 2, T(2,2) = 3 and T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Mar 25 2012
Showing 1-7 of 7 results.