T(n+3,k+3) = (1/k!)*Sum_{i = 0..k} (-1)^(k-i)*binomial(k,i)*(i+3)^n, n,k >= 0.
T(n,k) = Stirling2(n,k) - 3*Stirling2(n-1,k) + 2*Stirling2(n-2,k), n,k >= 3.
Recurrence relation: T(n,k) = T(n-1,k-1) + k*T(n-1,k) for n > 3, with boundary conditions: T(n,2) = T(2,n) = 0 for all n; T(3,3) = 1; T(3,k) = 0 for k > 3.
Special cases: T(n,3) = 3^(n-3); T(n,4) = 4^(n-3) - 3^(n-3).
E.g.f. (k+3) column (with offset 3): (1/k!)*exp(3x)*(exp(x)-1)^k.
O.g.f. k-th column: Sum_{n >= k} T(n,k)*x^n = x^k/((1-3*x)*(1-4*x)*...*(1-k*x)).
E.g.f.: exp(3*t + x*(exp(t)-1)) = Sum_{n >= 0} Sum_{k = 0..n} T(n+3,k+3)*x^k*t^n/n! = Sum_{n >= 0} B_n(3;x)*t^n/n! = 1 + (3+x)*t/1! + (9+7*x+x^2)*t^2/2! + ..., where the row polynomials, B_n(3;x) := Sum_{k = 0..n} T(n+3,k+3)*x^k, may be called the 3-Bell polynomials.
Dobinski-type identities: Row polynomial B_n(3;x) = exp(-x)*Sum_{i >= 0} (i+3)^n*x^i/i!; Sum_{k = 0..n} k!*T(n+3,k+3)*x^k = Sum_{i >= 0} (i+3)^n*x^i/(1+x)^(i+1).
The T(n,k) are the connection coefficients between the falling factorials and the shifted monomials (x+3)^(n-3). For example, 9 + 7*x + x*(x-1) = (x+3)^2 and 27 + 37*x + 12x*(x-1) + x*(x-1)*(x-2) = (x+3)^3.
This array is the matrix product P^2 * S, where P denotes Pascal's triangle,
A007318 and S denotes the lower triangular array of Stirling numbers of the second kind,
A008277 (apply Theorem 10 of [Neuwirth]). The inverse array is
A049458, the signed 3-Stirling numbers of the first kind.
Comments