cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A005062 a(n) = 6^n - 5^n.

Original entry on oeis.org

0, 1, 11, 91, 671, 4651, 31031, 201811, 1288991, 8124571, 50700551, 313968931, 1932641711, 11839990891, 72260648471, 439667406451, 2668522016831, 16163719991611, 97745259402791, 590286253682371
Offset: 0

Views

Author

Keywords

Comments

These are the numerators of a(n) = (Integral_{x=0..1/3} (1-x/2)^n dx). E.g., a(3)=671/2592. The denominators are b(n) = 3*(n+1)*6^n. E.g., b(3)=2592. the subscripts in both cases are 0. - Al Hakanson (hawkuu(AT)excite.com), Feb 22 2004
Number of numbers with at most n digits whose largest digit is 5. For the first 5 terms, the first differences (i.e., ...with exactly n digits...) are given in A125373. - M. F. Hasler, May 03 2015
a(n) is the number of n-digit numbers whose smallest decimal digit is 4. - Stefano Spezia, Nov 15 2023

Examples

			G.f. = x + 11*x^2 + 91*x^3 + 671*x^4 + 4651*x^5 + 31031*x^6 + 201811*x^7 + ... - _Michael Somos_, Jul 14 2018
		

Crossrefs

Cf. A005060 (5^n - 4^n), A125373.

Programs

  • Magma
    [6^n - 5^n: n in [0..25]]; // Vincenzo Librandi, Jun 03 2011
    
  • Maple
    restart:a:=n->sum(5^(n-j)*binomial(n,j),j=1..n): seq(a(n), n=0..19); # Zerinvary Lajos, Apr 18 2009
  • Mathematica
    f[n_]:=6^n-5^n;f[Range[0,60]] (* Vladimir Joseph Stephan Orlovsky, Jan 31 2011 *)
    LinearRecurrence[{11,-30},{0,1},20] (* Harvey P. Dale, May 28 2015 *)
  • PARI
    a(n)=6^n-5^n \\ M. F. Hasler, May 03 2015
    
  • PARI
    for(d=0,9,print1(sum(n=1,10^d-1,vecmax(digits(n))==5)",")) \\ Only to illustrate the comment about "largest digit equals 5".
  • Sage
    [lucas_number1(n,11,30) for n in range(0, 20)] # Zerinvary Lajos, Apr 27 2009
    

Formula

G.f.: x/((1-5*x)(1-6*x)).
a(n) = 11*a(n-1) - 30*a(n-2), n > 1; a(0)=0, a(1)=1. - Philippe Deléham, Jan 01 2009
E.g.f.: exp(6*x) - exp(5*x). - Mohammad K. Azarian, Jan 14 2009
a(n) = -(30)^n * a(-n) for all n in Z. - Michael Somos, Jul 14 2018

A257286 a(n) = 5*6^n - 4*5^n.

Original entry on oeis.org

1, 10, 80, 580, 3980, 26380, 170780, 1087180, 6835580, 42575980, 263268380, 1618672780, 9907349180, 60420657580, 367406757980, 2228854610380, 13495197974780, 81581539411180, 492540994279580, 2970504754739980, 17899322473752380
Offset: 0

Views

Author

M. F. Hasler, May 03 2015

Keywords

Comments

First differences of 6^n - 5^n = A005062.
a(n-1) is the number of numbers with n digits having the largest digit equal to 5. Or, equivalently, number of n-letter words over a 6-letter alphabet {a,b,c,d,e,f}, which must not start with the first letter of the alphabet, and in which the last letter of the alphabet must appear.

Crossrefs

Cf. A005062.
Coincides with A125373 only for the first terms.

Programs

  • Magma
    [5*6^n-4*5^n: n in [0..20]]; // Vincenzo Librandi, May 04 2015
  • Mathematica
    Table[5 6^n - 4 5^n, {n, 0, 30}] (* Vincenzo Librandi, May 04 2015 *)
  • PARI
    a(n)=5*6^n-4*5^n
    

Formula

a(n) = 11 a(n-1) - 30 a(n-2).
G.f.: (1-x)/((1-5*x)*(1-6*x)). - Vincenzo Librandi, May 04 2015
E.g.f.: exp(5*x)*(5*exp(x) - 4). - Stefano Spezia, Nov 15 2023
Showing 1-2 of 2 results.