A016160 Duplicate of A005062.
0, 1, 11, 91, 671, 4651, 31031, 201811, 1288991, 8124571, 50700551
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
G.f. = x + 7*x^2 + 37*x^3 + 175*x^4 + 781*x^5 + 3367*x^6 + 14197*x^7 + ...
List([0..10^2], n->4*n - 3^n); # Muniru A Asiru, Feb 06 2018
[4^n - 3^n: n in [0..25]]; // Vincenzo Librandi, Jun 03 2011
seq(4^n - 3^n, n=0..10^2); # Muniru A Asiru, Feb 06 2018
Table[4^n - 3^n, {n, 0, 20}] (* Vladimir Joseph Stephan Orlovsky, Dec 21 2008 *) LinearRecurrence[{7,-12},{0,1},30] (* Harvey P. Dale, May 04 2012 *) Table[Numerator[1-(3/4)^n],{n,0,20}] (* see link Wolfram Mathworld - Fred Daniel Kline, Feb 05 2018 *)
a(n)=1<<(n+n)-3^n \\ Charles R Greathouse IV, Jun 16 2011
def a(n): return 4**n - 3**n print([a(n) for n in range(23)]) # Michael S. Branicky, Sep 01 2021
Array a begins: [n\k][0 1 2 3 4 5 6 ... [0] 1 1 1 1 1 1 1 ... [1] 1 3 7 15 31 63 ... [2] 1 5 19 65 211 ... [3] 1 7 37 175 ... ... Triangle T begins: n\m 0 1 2 3 4 5 6 7 8 9 10 ... 0: 1 1: 1 1 2: 1 3 1 3: 1 5 7 1 4: 1 7 19 15 1 5: 1 9 37 65 31 1 6: 1 11 61 175 211 63 1 7: 1 13 91 369 781 665 127 1 8: 1 15 127 671 2101 3367 2059 255 1 9: 1 17 169 1105 4651 11529 14197 6305 511 1 10: 1 19 217 1695 9031 31031 61741 58975 19171 1023 1 ... - _Wolfdieter Lang_, May 07 2021
Flatten[Table[n = d - e; k = e; (n + 1)^(k + 1) - n^(k + 1), {d, 0, 100}, {e, 0, d}]] (* T. D. Noe, Feb 22 2012 *)
T(n,m):=if m=0 then 1 else sum(k!*(-1)^(m+k)*stirling2(m,k)*binomial(n+k-1,n),k,0,m); /* Vladimir Kruchinin, Jan 28 2018 */
[(6^(n+1)-2^(n+1))/4 : n in [0..30]]; // Vincenzo Librandi, Oct 09 2011
Table[(6^(n+1) -2^(n+1))/4, {n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Jan 19 2011 *) CoefficientList[Series[1/((1-2x)(1-6x)),{x,0,30}],x] (* or *) LinearRecurrence[{8,-12},{1,8},30] (* Harvey P. Dale, Jan 15 2015 *)
Vec(1/(1-2*x)/(1-6*x)+O(x^30)) \\ Charles R Greathouse IV, Apr 17 2012
[lucas_number1(n,8,12) for n in range(1, 31)] # Zerinvary Lajos, Apr 23 2009
[(6^n - 2^n)/4 for n in range(1,31)] # Zerinvary Lajos, Jun 04 2009
a016189 n = 10 ^ n - 9 ^ n a016189_list = 0 : zipWith (+) (map (* 9) a016189_list) a011557_list -- Reinhard Zumkeller, Apr 03 2015
[10^n - 9^n: n in [0..20]]; // Vincenzo Librandi, Apr 26 2011
f[n_]:=10^n-9^n;f[Range[0,40]] (* Vladimir Joseph Stephan Orlovsky, Feb 14 2011 *)
a(n)=10^n-9^n \\ M. F. Hasler, May 04 2015
[n le 2 select n-1 else 13*Self(n-1) -42*Self(n-2): n in [1..31]]; // G. C. Greubel, Nov 10 2024
a:=n->sum(6^(n-j)*binomial(n,j),j=1..n): seq(a(n), n=0..30); # Zerinvary Lajos, Apr 18 2009
Table[7^n-6^n,{n,0,30}] (* or *) LinearRecurrence[{13,-42},{0,1},30] (* Harvey P. Dale, Apr 25 2020 *)
A016169=BinaryRecurrenceSequence(13,-42,0,1) [A016169(n) for n in range(41)] # G. C. Greubel, Nov 10 2024
n\m 0 1 2 3 4 5 ... 0 1 1 5 1 2 25 11 1 3 125 91 18 1 4 625 671 217 26 1 5 3125 4651 2190 425 35 1 ... 5-restricted S2: a(1,0)=5 from 1,6|2|3|4|5, 2,6|1|3|4|5, 3,6|1|2|4|5, 4,6|1|2|3|5 and 5,6|1|2|3|4. Recurrence: a(4,2) = (5+2)*a(3,2)+ a(3,1) = 7*18 + 91 = 217. Normal ordering (n=1): (xD)^1 x^5 = Sum_{m=0..1} a(1,m)*x^(5+m)*D^m = 5*x^5 + 1*x^6*D. a(2,1) = Sum_{j=0..1} S1(5,5-j)*S2(7-j,6) = 1*21 - 10*1 = 11.
a[n_, m_] := Sum[ StirlingS1[5, 5-j]*StirlingS2[n+5-j, m+5], {j, 0, Min[5, n-m]}]; Flatten[ Table[ a[n, m], {n, 0, 10}, {m, 0, n}] ] (* Jean-François Alcover, Dec 02 2011, after Wolfdieter Lang *)
[5*6^n-4*5^n: n in [0..20]]; // Vincenzo Librandi, May 04 2015
Table[5 6^n - 4 5^n, {n, 0, 30}] (* Vincenzo Librandi, May 04 2015 *)
a(n)=5*6^n-4*5^n
Vec(1/((1-5*x)*(1-6*x)*(1-7*x)*(1-8*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012
Select[Prime[Range[60]],!PrimeQ[6^#-5^#]&] (* Harvey P. Dale, Apr 26 2011 *)
apmb(a,b,n) = { forprime(x=2,n, y=a^x-b^x; if(!ispseudoprime(y), print1(x","); ) ) }
Comments