A196835
Alternating row sums of Sheffer triangle A193685 (5-restricted Stirling2 numbers).
Original entry on oeis.org
1, 4, 15, 51, 146, 273, -319, -6374, -36235, -113833, 69388, 3772035, 28631669, 112704452, -96418909, -5652669753, -50538496446, -230554460867, 281597003109, 16303457144146, 166512491229617, 872578914956059, -1111135578108284, -78512971676777833, -919653124088665479
Offset: 0
A196834
Row sums of Sheffer triangle A193685 (5-restricted Stirling2 numbers).
Original entry on oeis.org
1, 6, 37, 235, 1540, 10427, 73013, 529032, 3967195, 30785747, 247126450, 2050937445, 17585497797, 155666739742, 1421428484337, 13377704321695, 129659127547372, 1293095848212799, 13259069937250169, 139671750579429512, 1510382932875294447, 16754464511605466311
Offset: 0
-
b:= proc(n, m) option remember;
`if`(n=0, 1, m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 5):
seq(a(n), n=0..23); # Alois P. Heinz, Aug 22 2021
-
nmax = 20; CoefficientList[Series[E^(E^x + 5*x - 1), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 10 2020 *)
A016269
Number of monotone Boolean functions of n variables with 2 mincuts. Also number of Sperner systems with 2 blocks.
Original entry on oeis.org
1, 9, 55, 285, 1351, 6069, 26335, 111645, 465751, 1921029, 7859215, 31964205, 129442951, 522538389, 2104469695, 8460859965, 33972448951, 136276954149, 546269553775, 2188563950925, 8764714059751, 35090233104309, 140455067207455, 562102681589085, 2249257981411351
Offset: 0
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 292, #8, s(n,2).
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- K. S. Brown, Dedekind's problem
- John Elias, Illustration of Initial Terms: Inverse of the Sierpinski Triangle
- Vladeta Jovovic, Illustration for A016269, A047707, A051112-A051118
- Goran Kilibarda and Vladeta Jovovic, Antichains of Multisets, J. Integer Seqs., Vol. 7, 2004.
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- N. M. Rivière, Recursive formulas on free distributive lattices, J. Combinatorial Theory 5 1968 229--234. MR0231764 (38 #92). - _N. J. A. Sloane_, May 12 2012
- Index entries for sequences related to Boolean functions
- Index entries for linear recurrences with constant coefficients, signature (9,-26,24).
-
[(2^n)*(2^n-1)/2-3^n+2^n: n in [2..30]]; // Vincenzo Librandi, Oct 06 2017
-
a:= n-> Stirling2(n+4, 4)-Stirling2(n+3, 4): seq(a(n), n=0..24); # Zerinvary Lajos, Oct 05 2007
-
CoefficientList[1/((1-2x)(1-3x)(1-4x)) + O[x]^30, x] (* Jean-François Alcover, Nov 28 2015 *)
LinearRecurrence[{9, -26, 24}, {1, 9, 55}, 40] (* Vincenzo Librandi, Oct 06 2017 *)
-
a(n)=(2^n)*(2^n-1)/2-3^n+2^n \\ Charles R Greathouse IV, Mar 22 2016
A003468
Number of minimal 3-covers of a labeled n-set.
Original entry on oeis.org
1, 22, 305, 3410, 33621, 305382, 2619625, 21554170, 171870941, 1337764142, 10216988145, 76862115330, 571247591461, 4203844925302, 30687029023865, 222518183370890, 1604626924403181, 11518132293452862
Offset: 3
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 3..1000
- T. Hearne and C. G. Wagner, Minimal covers of finite sets, Discr. Math. 5 (1973), 247-251.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Eric Weisstein's World of Mathematics, Minimal cover.
- Index entries for linear recurrences with constant coefficients, signature (22, -179, 638, -840).
-
[7^n/6 - 6^n/2 + 5^n/2 - 4^n/6: n in [3..30]]; // Vincenzo Librandi, May 03 2013
-
A003468:=1/(6*z-1)/(4*z-1)/(7*z-1)/(5*z-1); # conjectured by Simon Plouffe in his 1992 dissertation
-
Table[7^n/6 - 6^n/2 + 5^n/2 - 4^n/6, {n, 3, 20}] (* Vaclav Kotesovec, Nov 19 2012 *)
LinearRecurrence[{22,-179,638,-840},{1,22,305,3410},20] (* Harvey P. Dale, Jan 09 2024 *)
A001552
a(n) = 1^n + 2^n + ... + 5^n.
Original entry on oeis.org
5, 15, 55, 225, 979, 4425, 20515, 96825, 462979, 2235465, 10874275, 53201625, 261453379, 1289414505, 6376750435, 31605701625, 156925970179, 780248593545, 3883804424995, 19349527020825, 96470431101379, 481245667164585, 2401809362313955, 11991391850823225
Offset: 0
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 813.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..200
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 365
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (15, -85, 225, -274, 120).
-
Table[Total[Range[5]^n], {n, 0, 40}] (* T. D. Noe, Oct 10 2011 *)
-
a(n)=if(n<0,0,sum(k=1,5,k^n))
-
[3**n + sigma(4, n) + 5**n for n in range(22)] # Zerinvary Lajos, Jun 04 2009
-
[1 + 2**n + 3**n + 4**n + 5**n for n in range(22)] # Zerinvary Lajos, Jun 04 2009
A025211
Expansion of 1/((1-2x)(1-3x)(1-4x)(1-5x)).
Original entry on oeis.org
1, 14, 125, 910, 5901, 35574, 204205, 1132670, 6129101, 32566534, 170691885, 885423630, 4556561101, 23305343894, 118631189165, 601616805790, 3042056477901, 15346559343654, 77279066272045, 388583895311150, 1951684190615501, 9793511186181814, 49108010998116525
Offset: 0
-
[3^(n+3)/2 -2*4^(n+2)-2^(n+2)/3+5^(n+3)/6: n in [0..30]]; // Vincenzo Librandi, Jun 21 2011
-
CoefficientList[Series[1/((1 - 2 x) (1 - 3 x) (1 - 4 x) (1 - 5 x)), {x, 0, 25}], x] (* Vladimir Joseph Stephan Orlovsky, Jun 20 2011 *)
LinearRecurrence[{14,-71,154,-120},{1,14,125,910},30] (* Harvey P. Dale, Feb 05 2020 *)
-
a(n)=n-=2;3^n*3/2-2*4^n-2^n/3+5^n*5/6 \\ Charles R Greathouse IV, Jun 21 2011
A028025
Expansion of 1/((1-3x)*(1-4x)*(1-5x)*(1-6x)).
Original entry on oeis.org
1, 18, 205, 1890, 15421, 116298, 830845, 5709330, 38119741, 249026778, 1599719485, 10142356770, 63639854461, 396031348458, 2448208592125, 15053605980210, 92160458747581, 562225198873338, 3419937140824765
Offset: 0
-
CoefficientList[Series[1/((1-3x)(1-4x)(1-5x)(1-6x)),{x,0,30}],x] (* or *) LinearRecurrence[{18,-119,342,-360},{1,18,205,1890},30] (* Harvey P. Dale, Jan 29 2024 *)
-
Vec(1/((1-3*x)*(1-4*x)*(1-5*x)*(1-6*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
A028165
Expansion of 1/((1-5x)*(1-6x)*(1-7x)*(1-8x)).
Original entry on oeis.org
1, 26, 425, 5590, 64701, 688506, 6906145, 66324830, 616252901, 5580303586, 49508360265, 432061044870, 3720287489101, 31681154472266, 267320885100785, 2238337148081710, 18621251375573301, 154069635600426546
Offset: 0
A016103
Expansion of 1/((1-4x)(1-5x)(1-6x)).
Original entry on oeis.org
1, 15, 151, 1275, 9751, 70035, 481951, 3216795, 20991751, 134667555, 852639151, 5343198315, 33212784151, 205111785075, 1260114546751, 7708980203835, 46999640806951, 285743822630595, 1733261544204751
Offset: 0
-
m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-4*x)*(1-5*x)*(1-6*x)))); // Vincenzo Librandi, Jun 24 2013
-
I:=[1, 15, 151]; [n le 3 select I[n] else 15*Self(n-1)-74*Self(n-2)+120*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Jun 24 2013
-
CoefficientList[Series[1 / ((1 - 4 x) (1 - 5 x) (1 - 6 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Jun 24 2013 *)
-
Vec(1/((1-4*x)*(1-5*x)*(1-6*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
A016753
Expansion of 1/((1-3*x)*(1-4*x)*(1-5*x)).
Original entry on oeis.org
1, 12, 97, 660, 4081, 23772, 133057, 724260, 3863761, 20308332, 105558817, 544039860, 2785713841, 14192221692, 72020501377, 364354427460, 1838822866321, 9262446387852, 46585947584737
Offset: 0
-
[(5^(n+2) - 2*4^(n+2) + 3^(n+2))/2: n in [0..30]]; // G. C. Greubel, Sep 15 2018
-
CoefficientList[ Series[ 1/((1 - 3x)(1 - 4x)(1 - 5x)), {x, 0, 25} ], x ]
LinearRecurrence[{12,-47,60}, {1, 12, 97}, 30] (* G. C. Greubel, Sep 15 2018 *)
-
Vec(1/((1-3*x)*(1-4*x)*(1-5*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
Showing 1-10 of 12 results.
Comments