A257290 Number of 3-Motzkin paths of length n with no level steps at even level.
1, 0, 1, 3, 11, 39, 140, 504, 1823, 6621, 24144, 88380, 324699, 1197045, 4427565, 16427385, 61129025, 228103185, 853399640, 3200710680, 12032399045, 45332769075, 171148151095, 647412581643, 2453529142471, 9314461044639, 35419207688050, 134894888442714, 514506926871927
Offset: 0
Keywords
Examples
For n=3 we have 3 paths: UH1D, UH2D, UH3D.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
CoefficientList[Series[(1-3*x-Sqrt[(1-3*x)*(1-3*x-4*x^2)])/(2*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 21 2015 *)
-
PARI
x='x+O('x^50); Vec((1-3*x-sqrt((1-3*x)*(1-3*x-4*x^2)))/(2*x^2)) \\ G. C. Greubel, Feb 14 2017
Formula
a(n) = Sum_{i=0..floor(n/2)} 3^(n-2i)*C(i)*binomial(n-i-1,n), where C(i) is the n-th Catalan number A000108.
G.f.: (1 - 3*z - sqrt((1-3*z)*(1-3*z-4*z^2)))/(2*z^2).
a(n) ~ sqrt(5) * 4^n / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 21 2015
Conjecture: (n+2)*a(n) +3*(-2*n-1)*a(n-1) +5*(n-1)*a(n-2) +6*(2*n-5)*a(n-3)=0. - R. J. Mathar, Sep 24 2016