cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A156289 Triangle read by rows: T(n,k) is the number of end rhyme patterns of a poem of an even number of lines (2n) with 1<=k<=n evenly rhymed sounds.

Original entry on oeis.org

1, 1, 3, 1, 15, 15, 1, 63, 210, 105, 1, 255, 2205, 3150, 945, 1, 1023, 21120, 65835, 51975, 10395, 1, 4095, 195195, 1201200, 1891890, 945945, 135135, 1, 16383, 1777230, 20585565, 58108050, 54864810, 18918900, 2027025, 1, 65535, 16076985
Offset: 1

Views

Author

Hartmut F. W. Hoft, Feb 07 2009

Keywords

Comments

T(n,k) is the number of partitions of a set of size 2*n into k blocks of even size [Comtet]. For partitions into odd sized blocks see A136630.
See A241171 for the triangle of ordered set partitions of the set {1,2,...,2*n} into k even sized blocks. - Peter Bala, Aug 20 2014
This triangle T(n,k) gives the sum over the M_3 multinomials A036040 for the partitions of 2*n with k even parts, for 1 <= k <= n. See the triangle A257490 with sums over the entries with k parts, and the Hartmut F. W. Hoft program. - Wolfdieter Lang, May 13 2015

Examples

			The triangle begins
  n\k|..1.....2......3......4......5......6
  =========================================
  .1.|..1
  .2.|..1.....3
  .3.|..1....15.....15
  .4.|..1....63....210....105
  .5.|..1...255...2205...3150....945
  .6.|..1..1023..21120..65835..51975..10395
  ..
T(3,3) = 15. The 15 partitions of the set [6] into three even blocks are:
  (12)(34)(56), (12)(35)(46), (12)(36)(45),
  (13)(24)(56), (13)(25)(46), (13)(26)(45),
  (14)(23)(56), (14)(25)(36), (14)(26)(35),
  (15)(23)(46), (15)(24)(36), (15)(26)(34),
  (16)(23)(45), (16)(24)(35), (16)(25)(34).
Examples of recurrence relation
 T(4,3) = 5*T(3,2) + 9*T(3,3) = 5*15 + 9*15 = 210;
 T(6,5) = 9*T(5,4) + 25*T(5,5) = 9*3150 + 25*945 = 51975.
 T(4,2) = 28 + 35 = 63 (M_3 multinomials A036040 for partitions of 8 with 3 even parts, namely (2,6) and (4^2)). - _Wolfdieter Lang_, May 13 2015
		

References

  • L. Comtet, Analyse Combinatoire, Presses Univ. de France, 1970, Vol. II, pages 61-62.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, pages 225-226.

Crossrefs

Diagonal T(n, n) is A001147, subdiagonal T(n+1, n) is A001880.
2nd column variant T(n, 2)/3, for 2<=n, is A002450.
3rd column variant T(n, 3)/15, for 3<=n, is A002451.
Sum of the n-th row is A005046.

Programs

  • Maple
    T := proc(n,k) option remember; `if`(k = 0 and n = 0, 1, `if`(n < 0, 0,
    (2*k-1)*T(n-1, k-1) + k^2*T(n-1, k))) end:
    for n from 1 to 8 do seq(T(n,k), k=1..n) od; # Peter Luschny, Sep 04 2017
  • Mathematica
    T[n_,k_] := Which[n < k, 0, n == 1, 1, True, 2/Factorial2[2 k] Sum[(-1)^(k + j) Binomial[2 k, k + j] j^(2 n), {j, 1, k}]]
    (* alternate computation with function triangle[] defined in A257490 *)
    a[n_]:=Map[Apply[Plus,#]&,triangle[n],{2}]
    (* Hartmut F. W. Hoft, Apr 26 2015 *)

Formula

Recursion: T(n,1)=1 for 1<=n; T(n,k)=0 for 1<=n
Generating function for the k-th column of the triangle T(i+k,k):
G(k,x) = Sum_{i>=0} T(i+k,k)*x^i = Product_{j=1..k} (2*j-1)/(1-j^2*x).
Closed form expression: T(n,k) = (2/(k!*2^k))*Sum_{j=1..k} (-1)^(k-j)*binomial(2*k,k-j)*j^(2*n).
From Peter Bala, Feb 21 2011: (Start)
GENERATING FUNCTION
E.g.f. (including a constant 1):
(1)... F(x,z) = exp(x*(cosh(z)-1))
= Sum_{n>=0} R(n,x)*z^(2*n)/(2*n)!
= 1 + x*z^2/2! + (x + 3*x^2)*z^4/4! + (x + 15*x^2 + 15*x^3)*z^6/6! + ....
ROW POLYNOMIALS
The row polynomials R(n,x) begin
... R(1,x) = x
... R(2,x) = x + 3*x^2
... R(3,x) = x + 15*x^2 + 15*x^3.
The egf F(x,z) satisfies the partial differential equation
(2)... d^2/dz^2(F) = x*F + x*(2*x+1)*F' + x^2*F'',
where ' denotes differentiation with respect to x. Hence the row polynomials satisfy the recurrence relation
(3)... R(n+1,x) = x*{R(n,x) + (2*x+1)*R'(n,x) + x*R''(n,x)}
with R(0,x) = 1. The recurrence relation for T(n,k) given above follows from this.
(4)... T(n,k) = (2*k-1)!!*A036969(n,k).
(End)

A257490 Irregular triangle read by rows in which the n-th row lists multinomials (A036040) for partitions of 2n which have only even parts in Abramowitz-Stegun ordering.

Original entry on oeis.org

1, 1, 3, 1, 15, 15, 1, 28, 35, 210, 105, 1, 45, 210, 630, 1575, 3150, 945, 1, 66, 495, 462, 1485, 13860, 5775, 13860, 51975, 51975, 10395, 1, 91, 1001, 3003, 3003, 45045, 42042, 105105, 45045, 630630, 525525, 315315, 1576575, 945945, 135135
Offset: 1

Author

Hartmut F. W. Hoft, Apr 26 2015

Keywords

Comments

The length of row n is given by A000041(n).
Each entry in this irregular triangle is the quotient of the respective entries in A257468 and A096162, which is the multinomial called M_3 in Abramowitz-Stegun.
Has the same structure as the triangles in A036036, A096162, A115621 and A257468.

Examples

			Brackets group all partitions of the same length when there is more than one partition.
n/m  1    2          3           4    5
1:   1
2:   1    3
3:   1   15         15
4:   1  [28  35]   210         105
5:   1  [45 210]  [630 1575]  3150  945
...
n = 6:  1 [66 495 462] [1485 13860 5775] [13860 51975] 51975  0395
Replacing the bracketed numbers by their sums yields the triangle of A156289.
		

Programs

  • Mathematica
    (* triangle2574868[] and triangle096162[] are defined as functions triangle[] in the respective sequences A257468 and A096162 *)
    triangle[n_] := triangle257468[n]/triangle096162[n]
    a[n_] := Flatten[triangle[n]]
    a[7] (* data *)

Extensions

Edited by Wolfdieter Lang, May 11 2015
Showing 1-2 of 2 results.