cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A052055 Positions in both Pi and e indicate a common digit.

Original entry on oeis.org

13, 17, 18, 21, 34, 40, 45, 56, 59, 70, 81, 95, 100, 143, 170, 206, 244, 263, 275, 279, 294, 324, 326, 331, 334, 361, 365, 388, 389, 396, 412, 420, 428, 429, 453, 460, 461, 462, 484, 494, 500, 501, 504, 507, 512, 523, 526, 548, 582, 591, 595, 596, 599, 603
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1999

Keywords

Examples

			Pi = 3.1415926535897932384626...
..................|...||..|.....
_e = 2.7182818284590452353602...
		

Crossrefs

Programs

  • Maple
    N:= 1000: # to get all terms <= N+1
    Fpi:= convert(floor(10^N*Pi),base,10):
    Fe:= convert(floor(10^N*exp(1)),base,10):
    select(t -> Fpi[N+2-t] = Fe[N+2-t],[$2..N+1]); # Robert Israel, Jul 23 2014
  • Mathematica
    ed=RealDigits[N[E,2000]][[1]]; pd=RealDigits[N[\[Pi],2000]][[1]]; okQ[n_] := Take[ed,{n}] == Take[pd,{n}]; Select[Range[2000], okQ] (* Harvey P. Dale, Jan 05 2011 *)
    Module[{nn=3000,pid,ed},pid=RealDigits[Pi,10,nn][[1]];ed=RealDigits[ E,10,nn] [[1]]; Flatten[ Position[Transpose[{pid,ed}],{x_,x_}]]] (* Harvey P. Dale, Dec 19 2015 *)
  • PARI
    \p 1000
    e=Vec(Str(exp(1))); p=Vec(Str(Pi)); for(n=3, #e-9, if(e[n]==p[n], print1(n-1", "))) \\ Jens Kruse Andersen, Jul 23 2014
    
  • Python
    from sympy import E, S
    digits = 1000
    pi, e = str(S.Pi.n(digits+3)), str(E.n(digits+3))
    print([k for k in range(2, digits+1) if pi[k] == e[k]]) # Michael S. Branicky, Apr 29 2023

Extensions

More terms from James Sellers, Dec 28 1999

A257494 Positions where e and the Golden Ratio have a common decimal digit.

Original entry on oeis.org

3, 4, 10, 13, 24, 29, 32, 37, 38, 62, 63, 65, 100, 101, 127, 132, 150, 159, 170, 180, 183, 194, 204, 216, 228, 239, 256, 260, 268, 273, 277, 289, 297, 300, 310, 319, 320, 341, 375, 385, 391, 396, 406, 430, 431, 458, 473, 476, 486, 493, 500, 536, 544, 549
Offset: 1

Views

Author

Harvey P. Dale, Apr 26 2015

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=1000},Flatten[Position[Thread[{RealDigits[GoldenRatio,10,nn][[1]],RealDigits[E,10,nn][[1]]}],_?(#[[1]]==#[[2]]&),{1},Heads-> False]]]

A266002 Positions in Pi, e, and the Golden Ratio indicate a common digit.

Original entry on oeis.org

13, 100, 170, 396, 500, 596, 607, 694, 825, 828, 841, 941, 1283, 1292, 1385, 1595, 1706, 1743, 1906, 2021, 2061, 2154, 2258, 2303, 2360, 2368, 2508, 2547, 2558, 2711, 2725, 2792, 2833, 2858, 3037, 3052, 3281, 3310, 3430, 3498, 3519, 3592, 3652, 3710, 3868
Offset: 1

Views

Author

Harvey P. Dale, Dec 19 2015

Keywords

Examples

			The 100th digit of Pi = the 100th digit of e = the 100th digit of the Golden Ratio = 7.
		

Crossrefs

Programs

  • Mathematica
    Module[{nn=10000,pid,ed,grd},pid=RealDigits[Pi,10,nn][[1]];ed= RealDigits[ E,10,nn][[1]];grd=RealDigits[GoldenRatio,10,nn][[1]];Flatten[ Position[ Transpose[{pid,ed,grd}],{x_,x_,x_}]]]
Showing 1-3 of 3 results.