A257611 Triangle, read by rows, T(n,k) = t(n-k, k) where t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1) and f(n) = 2*n + 3.
1, 3, 3, 9, 30, 9, 27, 213, 213, 27, 81, 1308, 2982, 1308, 81, 243, 7431, 32646, 32646, 7431, 243, 729, 40314, 310263, 587628, 310263, 40314, 729, 2187, 212505, 2695923, 8701545, 8701545, 2695923, 212505, 2187, 6561, 1099704, 22059036, 113360904, 191433990, 113360904, 22059036, 1099704, 6561
Offset: 0
Examples
Array t(n,k) begins as: 1, 3, 9, 27, 81, 243, ...; 3, 30, 213, 1308, 7431, 40314, ...; 9, 213, 2982, 32646, 310263, 2695923, ...; 27, 1308, 32646, 587628, 8701545, 113360904, ...; 81, 7431, 310263, 8701545, 191433990, 3579465642, ...; 243, 40314, 2695923, 113360904, 3579465642, 93066106692, ...; 729, 212505, 22059036, 1351133676, 59641127202, 2104476295026, ...; Triangle T(n,k) begins as: 1; 3, 3; 9, 30, 9; 27, 213, 213, 27; 81, 1308, 2982, 1308, 81; 243, 7431, 32646, 32646, 7431, 243; 729, 40314, 310263, 587628, 310263, 40314, 729; 2187, 212505, 2695923, 8701545, 8701545, 2695923, 212505, 2187;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Mathematica
t[n_, k_, p_, q_]:= t[n, k, p, q] = If[n<0 || k<0, 0, If[n==0 && k==0, 1, (p*k+q)*t[n-1,k,p,q] + (p*n+q)*t[n,k-1,p,q]]]; T[n_, k_, p_, q_]= t[n-k, k, p, q]; Table[T[n,k,2,3], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 28 2022 *)
-
PARI
f(x) = 2*x + 3; T(n, k) = t(n-k, k); t(n, m) = if (!n && !m, 1, if (n < 0 || m < 0, 0, f(m)*t(n-1,m) + f(n)*t(n,m-1))); tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ");); print();); \\ Michel Marcus, May 06 2015
-
Sage
@CachedFunction def t(n,k,p,q): if (n<0 or k<0): return 0 elif (n==0 and k==0): return 1 else: return (p*k+q)*t(n-1,k,p,q) + (p*n+q)*t(n,k-1,p,q) def A257611(n,k): return t(n-k,k,2,3) flatten([[A257611(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 28 2022
Formula
T(n, k) = t(n-k, k), where t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), and f(n) = 2*n + 3.
Sum_{k=0..n} T(n, k) = A051578(n).
From G. C. Greubel, Feb 28 2022: (Start)
t(k, n) = t(n, k).
T(n, n-k) = T(n, k).
t(0, n) = T(n, 0) = A000244(n). (End)