cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257611 Triangle, read by rows, T(n,k) = t(n-k, k) where t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1) and f(n) = 2*n + 3.

Original entry on oeis.org

1, 3, 3, 9, 30, 9, 27, 213, 213, 27, 81, 1308, 2982, 1308, 81, 243, 7431, 32646, 32646, 7431, 243, 729, 40314, 310263, 587628, 310263, 40314, 729, 2187, 212505, 2695923, 8701545, 8701545, 2695923, 212505, 2187, 6561, 1099704, 22059036, 113360904, 191433990, 113360904, 22059036, 1099704, 6561
Offset: 0

Views

Author

Dale Gerdemann, May 06 2015

Keywords

Examples

			Array t(n,k) begins as:
    1,      3,        9,         27,          81,           243, ...;
    3,     30,      213,       1308,        7431,         40314, ...;
    9,    213,     2982,      32646,      310263,       2695923, ...;
   27,   1308,    32646,     587628,     8701545,     113360904, ...;
   81,   7431,   310263,    8701545,   191433990,    3579465642, ...;
  243,  40314,  2695923,  113360904,  3579465642,   93066106692, ...;
  729, 212505, 22059036, 1351133676, 59641127202, 2104476295026, ...;
Triangle T(n,k) begins as:
     1;
     3,      3;
     9,     30,       9;
    27,    213,     213,      27;
    81,   1308,    2982,    1308,      81;
   243,   7431,   32646,   32646,    7431,     243;
   729,  40314,  310263,  587628,  310263,   40314,    729;
  2187, 212505, 2695923, 8701545, 8701545, 2695923, 212505, 2187;
		

Crossrefs

Similar sequences listed in A256890.

Programs

  • Mathematica
    t[n_, k_, p_, q_]:= t[n, k, p, q] = If[n<0 || k<0, 0, If[n==0 && k==0, 1, (p*k+q)*t[n-1,k,p,q] + (p*n+q)*t[n,k-1,p,q]]];
    T[n_, k_, p_, q_]= t[n-k, k, p, q];
    Table[T[n,k,2,3], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 28 2022 *)
  • PARI
    f(x) = 2*x + 3;
    T(n, k) = t(n-k, k);
    t(n, m) = if (!n && !m, 1, if (n < 0 || m < 0, 0, f(m)*t(n-1,m) + f(n)*t(n,m-1)));
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ");); print();); \\ Michel Marcus, May 06 2015
    
  • Sage
    @CachedFunction
    def t(n,k,p,q):
        if (n<0 or k<0): return 0
        elif (n==0 and k==0): return 1
        else: return (p*k+q)*t(n-1,k,p,q) + (p*n+q)*t(n,k-1,p,q)
    def A257611(n,k): return t(n-k,k,2,3)
    flatten([[A257611(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 28 2022

Formula

T(n, k) = t(n-k, k), where t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), and f(n) = 2*n + 3.
Sum_{k=0..n} T(n, k) = A051578(n).
From G. C. Greubel, Feb 28 2022: (Start)
t(k, n) = t(n, k).
T(n, n-k) = T(n, k).
t(0, n) = T(n, 0) = A000244(n). (End)