cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257612 Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 4*x + 2.

Original entry on oeis.org

1, 2, 2, 4, 24, 4, 8, 184, 184, 8, 16, 1216, 3680, 1216, 16, 32, 7584, 53824, 53824, 7584, 32, 64, 46208, 674752, 1507072, 674752, 46208, 64, 128, 278912, 7764096, 33244544, 33244544, 7764096, 278912, 128, 256, 1677312, 84892672, 636233728, 1196803584, 636233728, 84892672, 1677312, 256
Offset: 0

Views

Author

Dale Gerdemann, May 06 2015

Keywords

Comments

Corresponding entries in this triangle and in A060187 differ only by powers of 2. - F. Chapoton, Nov 04 2020

Examples

			Triangle begins as:
    1;
    2,      2;
    4,     24,       4;
    8,    184,     184,        8;
   16,   1216,    3680,     1216,       16;
   32,   7584,   53824,    53824,     7584,      32;
   64,  46208,  674752,  1507072,   674752,   46208,     64;
  128, 278912, 7764096, 33244544, 33244544, 7764096, 278912, 128;
		

Crossrefs

Cf. A047053 (row sums), A060187, A142459, A257621.
See similar sequences listed in A256890.

Programs

  • Mathematica
    T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]];
    Table[T[n,k,4,2], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 20 2022 *)
  • PARI
    f(x) = 4*x + 2;
    T(n, k) = t(n-k, k);
    t(n, m) = if (!n && !m, 1, if (n < 0 || m < 0, 0, f(m)*t(n-1,m) + f(n)*t(n,m-1)));
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ");); print();); \\ Michel Marcus, May 06 2015
    
  • Sage
    def T(n,k,a,b): # A257612
        if (k<0 or k>n): return 0
        elif (n==0): return 1
        else: return  (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b)
    flatten([[T(n,k,4,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 20 2022

Formula

T(n,k) = t(n-k, k); t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 4*x + 2.
Sum_{k=0..n} T(n,k) = A047053(n).
T(n, k) = (a*k + b)*T(n-1, k) + (a*(n-k) + b)*T(n-1, k-1), with T(n, 0) = 1, a = 4, and b = 2. - G. C. Greubel, Mar 20 2022