A257612 Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 4*x + 2.
1, 2, 2, 4, 24, 4, 8, 184, 184, 8, 16, 1216, 3680, 1216, 16, 32, 7584, 53824, 53824, 7584, 32, 64, 46208, 674752, 1507072, 674752, 46208, 64, 128, 278912, 7764096, 33244544, 33244544, 7764096, 278912, 128, 256, 1677312, 84892672, 636233728, 1196803584, 636233728, 84892672, 1677312, 256
Offset: 0
Examples
Triangle begins as: 1; 2, 2; 4, 24, 4; 8, 184, 184, 8; 16, 1216, 3680, 1216, 16; 32, 7584, 53824, 53824, 7584, 32; 64, 46208, 674752, 1507072, 674752, 46208, 64; 128, 278912, 7764096, 33244544, 33244544, 7764096, 278912, 128;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Mathematica
T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]]; Table[T[n,k,4,2], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 20 2022 *)
-
PARI
f(x) = 4*x + 2; T(n, k) = t(n-k, k); t(n, m) = if (!n && !m, 1, if (n < 0 || m < 0, 0, f(m)*t(n-1,m) + f(n)*t(n,m-1))); tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ");); print();); \\ Michel Marcus, May 06 2015
-
Sage
def T(n,k,a,b): # A257612 if (k<0 or k>n): return 0 elif (n==0): return 1 else: return (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b) flatten([[T(n,k,4,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 20 2022
Formula
T(n,k) = t(n-k, k); t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 4*x + 2.
Sum_{k=0..n} T(n,k) = A047053(n).
T(n, k) = (a*k + b)*T(n-1, k) + (a*(n-k) + b)*T(n-1, k-1), with T(n, 0) = 1, a = 4, and b = 2. - G. C. Greubel, Mar 20 2022
Comments