cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257619 Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 9*x + 2.

Original entry on oeis.org

1, 2, 2, 4, 44, 4, 8, 564, 564, 8, 16, 6436, 22560, 6436, 16, 32, 71404, 637844, 637844, 71404, 32, 64, 786948, 15470232, 36994952, 15470232, 786948, 64, 128, 8660012, 346391196, 1660722424, 1660722424, 346391196, 8660012, 128
Offset: 0

Views

Author

Dale Gerdemann, May 09 2015

Keywords

Examples

			Triangle begins as:
    1;
    2,       2;
    4,      44,         4;
    8,     564,       564,          8;
   16,    6436,     22560,       6436,         16;
   32,   71404,    637844,     637844,      71404,        32;
   64,  786948,  15470232,   36994952,   15470232,    786948,      64;
  128, 8660012, 346391196, 1660722424, 1660722424, 346391196, 8660012, 128;
		

Crossrefs

Cf. A000079, A144829 (row sums), A257608.
Similar sequences listed in A256890.

Programs

  • Mathematica
    T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]];
    Table[T[n,k,9,2], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 24 2022 *)
  • PARI
    f(x) = 9*x + 2;
    t(n, m) = if ((n<0) || (m<0), 0, if ((n==0) && (m==0), 1, f(m)*t(n-1,m) + f(n)*t(n,m-1)));
    tabl(nn) = {for (n=0, nn, for (k=0, n, print1(t(n-k, k), ", "); ); print(); ); } \\ Michel Marcus, May 23 2015
    
  • Sage
    def T(n,k,a,b): # A257619
        if (k<0 or k>n): return 0
        elif (n==0): return 1
        else: return  (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b)
    flatten([[T(n,k,9,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 24 2022

Formula

T(n,k) = t(n-k, k); t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 9*x + 2.
Sum_{k=0..n} T(n, k) = A144829(n).
From G. C. Greubel, Mar 24 2022: (Start)
T(n, k) = (a*k + b)*T(n-1, k) + (a*(n-k) + b)*T(n-1, k-1), with T(n, 0) = 1, a = 9, and b = 2.
T(n, n-k) = T(n, k).
T(n, 0) = A000079(n).
T(n, 1) = (1/9)*(4*11^n - 2^n*(9*n + 4)).
T(n, 2) = (1/81)*(26*20^n - 4*(4+9*n)*11^n - 2^(n-1)*(20 + 9*n - 81*n^2)). (End)