A257619 Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 9*x + 2.
1, 2, 2, 4, 44, 4, 8, 564, 564, 8, 16, 6436, 22560, 6436, 16, 32, 71404, 637844, 637844, 71404, 32, 64, 786948, 15470232, 36994952, 15470232, 786948, 64, 128, 8660012, 346391196, 1660722424, 1660722424, 346391196, 8660012, 128
Offset: 0
Examples
Triangle begins as: 1; 2, 2; 4, 44, 4; 8, 564, 564, 8; 16, 6436, 22560, 6436, 16; 32, 71404, 637844, 637844, 71404, 32; 64, 786948, 15470232, 36994952, 15470232, 786948, 64; 128, 8660012, 346391196, 1660722424, 1660722424, 346391196, 8660012, 128;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Mathematica
T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]]; Table[T[n,k,9,2], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 24 2022 *)
-
PARI
f(x) = 9*x + 2; t(n, m) = if ((n<0) || (m<0), 0, if ((n==0) && (m==0), 1, f(m)*t(n-1,m) + f(n)*t(n,m-1))); tabl(nn) = {for (n=0, nn, for (k=0, n, print1(t(n-k, k), ", "); ); print(); ); } \\ Michel Marcus, May 23 2015
-
Sage
def T(n,k,a,b): # A257619 if (k<0 or k>n): return 0 elif (n==0): return 1 else: return (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b) flatten([[T(n,k,9,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 24 2022
Formula
T(n,k) = t(n-k, k); t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 9*x + 2.
Sum_{k=0..n} T(n, k) = A144829(n).
From G. C. Greubel, Mar 24 2022: (Start)
T(n, k) = (a*k + b)*T(n-1, k) + (a*(n-k) + b)*T(n-1, k-1), with T(n, 0) = 1, a = 9, and b = 2.
T(n, n-k) = T(n, k).
T(n, 0) = A000079(n).
T(n, 1) = (1/9)*(4*11^n - 2^n*(9*n + 4)).
T(n, 2) = (1/81)*(26*20^n - 4*(4+9*n)*11^n - 2^(n-1)*(20 + 9*n - 81*n^2)). (End)