A257648 Numbers m such that both p=2*m^2+11 and q=2*p^2+11 are prime.
1, 2, 3, 4, 6, 7, 8, 13, 20, 31, 52, 54, 62, 65, 70, 75, 137, 151, 153, 163, 212, 224, 281, 284, 329, 384, 419, 424, 445, 455, 489, 505, 524, 581, 593, 642, 646, 680, 706, 723, 738, 746, 775, 787, 795, 830, 841, 843, 918, 953, 970, 973, 984
Offset: 1
Keywords
Examples
n=1: m=1=A092968(2) and p=13=A092968(12), n=8: m=13=A092968(12) and p=349=A092968(127), n=9: m=20=A092968(12) and p=811=A092968(251).
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Reap[Do[If[PrimeQ[p=2*k^2+11]&&PrimeQ[2*(p)^2+11],Sow[k]],{k,10^3}]][[2,1]] bprQ[n_]:=Module[{p=2n^2+11},AllTrue[{p,2p^2+11},PrimeQ]]; Select[Range[ 1000],bprQ] (* Harvey P. Dale, Jun 16 2022 *)
Comments