cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A019798 Decimal expansion of sqrt(2*e).

Original entry on oeis.org

2, 3, 3, 1, 6, 4, 3, 9, 8, 1, 5, 9, 7, 1, 2, 4, 2, 0, 3, 3, 6, 3, 5, 3, 6, 0, 6, 2, 1, 6, 8, 4, 0, 0, 8, 7, 6, 3, 8, 0, 2, 3, 6, 2, 9, 9, 1, 8, 7, 5, 8, 8, 4, 2, 3, 0, 0, 8, 0, 9, 6, 4, 4, 7, 7, 7, 6, 0, 1, 0, 0, 4, 9, 4, 1, 2, 6, 5, 7, 3, 4, 9, 5, 0, 2, 6, 2, 9, 9, 9, 1, 7, 9, 5, 4, 7, 7, 7, 5
Offset: 1

Views

Author

Keywords

Comments

The coefficient a for which y=a*sqrt(x) kisses the exponential function y=exp(x). The kissing point is (0.5, sqrt(e)). For more details, see A257776. Also, inverse of this constant equals the maximum value of sqrt(x)*exp(-x) for positive x, attained at x=1/2. - Stanislav Sykora, Nov 04 2015

Examples

			2.3316439815971242033635360621684008763802362991875884230...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Sqrt(2*Exp(1)); // G. C. Greubel, Sep 08 2018
  • Mathematica
    RealDigits[Sqrt[2*E], 10, 100][[1]] (* G. C. Greubel, Sep 08 2018 *)
  • PARI
    sqrt(2*exp(1)) \\ Michel Marcus, Nov 05 2015
    

Formula

From Amiram Eldar, Jul 08 2023: (Start)
Equals Product_{n>=0} (e / (1 + 1/(n-1/2))^n).
Equals Product_{n>=0} (e * (1 - 1/(n+1/2))^n). (End)

A257777 Decimal expansion of arctan(e).

Original entry on oeis.org

1, 2, 1, 8, 2, 8, 2, 9, 0, 5, 0, 1, 7, 2, 7, 7, 6, 2, 1, 7, 6, 0, 4, 6, 1, 7, 6, 8, 9, 1, 5, 7, 9, 7, 9, 4, 1, 7, 3, 9, 1, 3, 1, 9, 4, 9, 4, 6, 8, 1, 5, 6, 5, 0, 5, 0, 4, 9, 6, 6, 0, 2, 6, 2, 9, 4, 8, 1, 7, 8, 2, 1, 6, 3, 0, 0, 7, 6, 0, 7, 6, 3, 7, 6, 1, 9, 6, 9, 1, 6, 8, 1, 5, 5, 7, 7, 2, 1, 3, 0, 7, 0, 2, 8, 6
Offset: 1

Views

Author

Stanislav Sykora, May 12 2015

Keywords

Comments

The slope of the unique straight line passing through the origin which kisses the exponential function y=exp(x), i.e., the angle (in radians) the tangent line subtends with the X axis. The kissing point coordinates are (1,e).

Examples

			1.21828290501727762176046176891579794173913194946815650504966...
In degrees:
69.8024687104273501888256538674056059123933374409546355361989953970...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ArcTan[E],10,105][[1]] (* Vaclav Kotesovec, Jun 02 2015 *)
  • PARI
    atan(exp(1))

Formula

Equals (Sum_{k>=0} arctan(sinh(1)/cosh(k))) - Pi/4 (Frontczak, 2017, eq. (3.22)). - Amiram Eldar, Jul 09 2023

A257775 Decimal expansion of (e/2)^2.

Original entry on oeis.org

1, 8, 4, 7, 2, 6, 4, 0, 2, 4, 7, 3, 2, 6, 6, 2, 5, 5, 6, 8, 0, 7, 6, 0, 6, 8, 6, 5, 1, 4, 3, 7, 5, 1, 9, 5, 3, 2, 9, 5, 0, 7, 8, 8, 9, 2, 6, 3, 7, 9, 6, 1, 8, 3, 1, 0, 2, 1, 7, 8, 1, 9, 5, 5, 6, 3, 0, 6, 4, 3, 4, 4, 9, 0, 1, 9, 7, 6, 4, 4, 4, 0, 8, 4, 6, 0, 7, 8, 1, 2, 1, 2, 6, 9, 7, 8, 0, 4, 4, 8, 6, 9, 3, 4, 3
Offset: 1

Views

Author

Stanislav Sykora, May 12 2015

Keywords

Comments

The coefficient a of the unique parabola y = a*x^2 which, at some x > 0, kisses the exponential function y = exp(x). The kissing point coordinates are (2,e^2).

Examples

			1.847264024732662556807606865143751953295078892637961831021781955630...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Exp[2]/4, 10, 120][[1]] (* Amiram Eldar, Jun 26 2023 *)
  • PARI
    exp(2)/4
Showing 1-3 of 3 results.