cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A248618 Decimal expansion of the solution when inverse Gudermannian(x) equals 1.

Original entry on oeis.org

8, 6, 5, 7, 6, 9, 4, 8, 3, 2, 3, 9, 6, 5, 8, 6, 2, 4, 2, 8, 9, 6, 0, 1, 8, 4, 6, 1, 9, 1, 8, 4, 4, 4, 4, 1, 3, 7, 9, 6, 7, 9, 1, 9, 9, 2, 4, 8, 7, 6, 0, 0, 9, 9, 6, 1, 1, 8, 4, 8, 2, 2, 9, 7, 4, 2, 4, 4, 8, 2, 2, 9, 4, 5, 8, 4, 1, 7, 0, 2, 8, 2, 0, 9, 9, 2, 0, 9, 2, 3, 6, 4, 0, 4, 8, 5, 7, 2, 7, 4, 1, 4, 6, 5, 2
Offset: 0

Views

Author

Robert G. Wilson v, Oct 09 2014

Keywords

Comments

Inverse of A248617.
This is the angle of the unique wedge having its apex at the origin and kissing the exponential curve y=exp(x) on one side, and its inverse logarithmic function y=log(x) on the other side. - Stanislav Sykora, May 31 2015

Examples

			0.86576948323965862428960184619184444137967919924876009961184822974244822945841...
The wedge angle in degrees:
49.6049374208547003776513077348112118247866748819092710723979907940346891648208... - _Stanislav Sykora_, May 31 2015
		

Crossrefs

Programs

Formula

Equals arcsin((exp(2)-1)/(exp(2)+1)). - Vaclav Kotesovec, Oct 11 2014
Equals atan(e)-atan(1/e) = A257777-A258428. - Stanislav Sykora, May 31 2015
From Amiram Eldar, Apr 07 2022: (Start)
Equals 2*arctan(tanh(1/2)).
Equals Integral_{x=0..1} sech(x) dx. (End)

A257775 Decimal expansion of (e/2)^2.

Original entry on oeis.org

1, 8, 4, 7, 2, 6, 4, 0, 2, 4, 7, 3, 2, 6, 6, 2, 5, 5, 6, 8, 0, 7, 6, 0, 6, 8, 6, 5, 1, 4, 3, 7, 5, 1, 9, 5, 3, 2, 9, 5, 0, 7, 8, 8, 9, 2, 6, 3, 7, 9, 6, 1, 8, 3, 1, 0, 2, 1, 7, 8, 1, 9, 5, 5, 6, 3, 0, 6, 4, 3, 4, 4, 9, 0, 1, 9, 7, 6, 4, 4, 4, 0, 8, 4, 6, 0, 7, 8, 1, 2, 1, 2, 6, 9, 7, 8, 0, 4, 4, 8, 6, 9, 3, 4, 3
Offset: 1

Views

Author

Stanislav Sykora, May 12 2015

Keywords

Comments

The coefficient a of the unique parabola y = a*x^2 which, at some x > 0, kisses the exponential function y = exp(x). The kissing point coordinates are (2,e^2).

Examples

			1.847264024732662556807606865143751953295078892637961831021781955630...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Exp[2]/4, 10, 120][[1]] (* Amiram Eldar, Jun 26 2023 *)
  • PARI
    exp(2)/4

A257776 Decimal expansion of (e/3)^3.

Original entry on oeis.org

7, 4, 3, 9, 0, 8, 7, 7, 4, 9, 3, 2, 8, 7, 6, 5, 8, 2, 9, 9, 7, 3, 5, 2, 9, 5, 0, 1, 6, 9, 6, 9, 3, 2, 5, 5, 4, 4, 3, 9, 9, 6, 5, 8, 6, 6, 1, 3, 1, 1, 6, 6, 7, 2, 0, 1, 4, 0, 3, 4, 6, 0, 1, 0, 9, 9, 9, 5, 7, 2, 5, 4, 7, 4, 4, 1, 4, 7, 1, 7, 5, 2, 2, 9, 7, 9, 6, 1, 9, 1, 1, 2, 0, 4, 8, 2, 1, 3, 7, 1, 1, 6, 8, 0, 0
Offset: 0

Views

Author

Stanislav Sykora, May 12 2015

Keywords

Comments

The coefficient a of the unique cubic function y=a*x^3 which kisses the exponential function y=exp(x). In general, a function y = c*x^n kisses the exponential at some x > 0 iff the coefficient c equals (e/n)^n. The kissing point is (n, e^n).

Examples

			0.743908774932876582997352950169693255443996586613116672014034601...
		

Crossrefs

Cf. A001113, A019740; A257775 (n=2), A257777 (n=1).

Programs

  • Mathematica
    RealDigits[(E/3)^3, 10, 120][[1]] (* Amiram Eldar, May 22 2023 *)
  • PARI
    (exp(3)/3)^3

A258428 Decimal expansion of arctan(1/e).

Original entry on oeis.org

3, 5, 2, 5, 1, 3, 4, 2, 1, 7, 7, 7, 6, 1, 8, 9, 9, 7, 4, 7, 0, 8, 5, 9, 9, 2, 2, 7, 2, 3, 9, 5, 3, 5, 0, 0, 3, 5, 9, 4, 5, 2, 7, 5, 0, 2, 1, 9, 3, 9, 6, 4, 0, 5, 4, 3, 7, 8, 1, 2, 0, 3, 3, 2, 0, 5, 7, 2, 9, 9, 8, 6, 8, 4, 2, 3, 4, 3, 7, 3, 5, 5, 5, 2, 0, 4, 8, 2, 4, 4, 5, 1, 5, 2, 8, 6, 4, 0, 3, 2, 8, 8, 2, 1, 0
Offset: 0

Views

Author

Stanislav Sykora, May 31 2015

Keywords

Comments

The slope of the unique straight line passing through the origin which kisses the logarithmic function y=log(x), i.e., the angle (in radians) the tangent line subtends with the X axis. The kissing point coordinates are (e,1).

Examples

			0.35251342177761899747085992272395350035945275021939640543781203320...
In degrees:
20.1975312895726498111743461325943940876066625590453644638010046029...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ArcTan[Exp[-1]],10,105][[1]] (* Vaclav Kotesovec, Jun 02 2015 *)
  • PARI
    atan(1/exp(1))

Formula

Equals Integral_{x=1..oo} 1/(2*cosh(x)) dx. - Amiram Eldar, Aug 10 2020

A257896 Decimal expansion of (Pi-arctan(e))/(2*Pi).

Original entry on oeis.org

3, 0, 6, 1, 0, 4, 2, 5, 3, 5, 8, 2, 1, 4, 6, 2, 4, 9, 4, 7, 5, 4, 8, 4, 2, 9, 4, 8, 1, 2, 7, 6, 2, 2, 0, 5, 7, 9, 8, 9, 0, 7, 3, 9, 5, 9, 9, 7, 3, 4, 8, 2, 3, 4, 6, 2, 1, 6, 6, 9, 4, 5, 7, 2, 3, 0, 5, 0, 7, 3, 7, 6, 1, 5, 9, 9, 7, 0, 9, 7, 3, 5, 3, 6, 6, 6, 7, 2, 3, 7, 5, 7, 6, 5, 7, 9, 0, 2, 4, 0, 5, 4, 2, 1, 7
Offset: 0

Views

Author

Stanislav Sykora, May 12 2015

Keywords

Comments

Fraction of the horizon obstructed by the exponential curve y=exp(x) when viewed from the origin.

Examples

			0.3061042535821462494754842948127622057989073959973482346216694572...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(Pi-ArcTan[E])/(2Pi),10,120][[1]] (* Harvey P. Dale, Oct 23 2017 *)
  • PARI
    (Pi-atan(exp(1)))/(2*Pi)

Formula

Equals 1/2 - A257777/(2*Pi).
Showing 1-5 of 5 results.