A257781 Positive integers whose square is the sum of 50 consecutive squares.
245, 385, 495, 655, 795, 1055, 1365, 2205, 2855, 3795, 4615, 6135, 7945, 12845, 16635, 22115, 26895, 35755, 46305, 74865, 96955, 128895, 156755, 208395, 269885, 436345, 565095, 751255, 913635, 1214615, 1573005, 2543205, 3293615, 4378635, 5325055, 7079295
Offset: 1
Examples
245 is in the sequence because 245^2 = 60025 = 7^2+8^2+...+56^2.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,6,0,0,0,0,0,-1).
Programs
-
Magma
I:=[245,385,495,655,795,1055,1365,2205,2855,3795, 4615,6135]; [n le 12 select I[n] else 6*Self(n-6)-Self(n-12): n in [1..40]]; // Vincenzo Librandi, May 11 2015
-
Mathematica
LinearRecurrence[{0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, -1}, {245, 385, 495, 655, 795, 1055, 1365, 2205, 2855, 3795, 4615, 6135}, 50] (* Vincenzo Librandi, May 11 2015 *) Select[Sqrt[Total/@Partition[Range[10^6]^2,50,1]],IntegerQ] (* Harvey P. Dale, Aug 07 2025 *)
-
PARI
Vec(-5*x*(39*x^11 +31*x^10 +27*x^9 +23*x^8 +21*x^7 +21*x^6 -211*x^5 -159*x^4 -131*x^3 -99*x^2 -77*x -49) / ((x^6 -2*x^3 -1)*(x^6 +2*x^3 -1)) + O(x^100))
Formula
a(n) = 6*a(n-6)-a(n-12).
G.f.: -5*x*(39*x^11 +31*x^10 +27*x^9 +23*x^8 +21*x^7 +21*x^6 -211*x^5 -159*x^4 -131*x^3 -99*x^2 -77*x -49) / ((x^6 -2*x^3 -1)*(x^6 +2*x^3 -1)).
Comments