cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257792 Expansion of 1/(1-x-x^2-x^3-x^5+x^8-x^9).

Original entry on oeis.org

1, 1, 2, 4, 7, 14, 26, 49, 92, 174, 328, 618, 1166, 2197, 4143, 7811, 14726, 27764, 52344, 98687, 186058, 350784, 661347, 1246865, 2350768, 4432000, 8355837, 15753609, 29700940, 55996428, 105572414, 199040101, 375258649, 707490872, 1333862213, 2514786376
Offset: 0

Views

Author

David Neil McGrath, May 08 2015

Keywords

Comments

This sequence counts partially ordered partitions of (n) in two distinct ways. It partitions (n) into parts containing (1,2,3,5,9) where the adjacent order of 3's and 5's are unimportant, example (1), and it partitions (n) into parts containing (1,2,3,4,5,6) where the adjacent order of the odd numbers is unimportant, example (2). The sign "=" is used within a bracket to indicate that the arrangements are counted as one.

Examples

			Example (1):Partial order of (n) into parts (1,2,3,5,9) where the adjacent order of 3's and 5's is unimportant. a(8)=92 These are (53=35)=1,(521)=6,(5111)=4,(332)=3,(3311)=6,(3221)=12,(32111)=20,(311111)=6,(2222)=1,(22211)=10,(221111)=15,(2111111)=7,(11111111)=1.
Example (2):Partial order of (n) into parts (1,2,3,4,5,6) where the adjacent order of all odd numbers (i.e. 1,3,5) is unimportant. a(6)=26 These are (6),(51=15),(42),(24),(411),(141),(114),(33),(321),(123),(231=213),(312=132),(3111=1311=1131=1113),(222),(2211),(1122),(1221),(2112),(2121),(1212),(21111),(12111),(11211),(11121),(11112),(111111).
		

Programs

  • Magma
    I:=[1,1,2,4,7,14,26,49,92]; [n le 9 select I[n] else Self(n-1)+Self(n-2)+Self(n-3)+Self(n-5)-Self(n-8)+Self(n-9): n in [1..40]]; // Vincenzo Librandi, May 09 2015
    
  • Mathematica
    CoefficientList[Series[1/(1 - x - x^2 - x^3 - x^5 + x^8 - x^9), {x, 0, 80}], x] (* Vincenzo Librandi, May 09 2015 *)
    LinearRecurrence[{1,1,1,0,1,0,0,-1,1},{1,1,2,4,7,14,26,49,92},36] (* Ray Chandler, Jul 14 2015 *)
  • Sage
    m = 40; L. = PowerSeriesRing(ZZ, m); f = 1/(1-x-x^2-x^3-x^5+x^8-x^9); print(f.coefficients()) # Bruno Berselli, May 12 2015

Formula

G.f.: 1/(1-x-x^2-x^3-x^5+x^8-x^9).
a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-5) - a(n-8) + a(n-9).

Extensions

More terms from Vincenzo Librandi, May 09 2015