A257824 Positive integers whose square is the sum of 73 consecutive squares.
4088, 23360, 1582640, 9047912, 18642443912, 106578370640, 7220791811360, 41281080400088, 85056113063608088, 486263602888235360, 32944848197744794640, 188344846763231651912, 388068345740467131839912, 2218576715650261475158640, 150310804012507009263599360
Offset: 1
Examples
4088 is in the sequence because 4088^2 = 16711744 = 442^2+443^2+...+514^2.
Links
- Colin Barker, Table of n, a(n) for n = 1..600
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,4562498,0,0,0,-1).
Crossrefs
Programs
-
Magma
I:=[4088,23360,1582640,9047912,18642443912, 106578370640,7220791811360,41281080400088]; [n le 8 select I[n] else 4562498*Self(n-4)-Self(n-8): n in [1..20]]; // Vincenzo Librandi, May 11 2015
-
Mathematica
LinearRecurrence[{0, 0, 0, 4562498, 0, 0, 0, -1}, {4088, 23360, 1582640, 9047912, 18642443912, 106578370640, 7220791811360, 41281080400088}, 40] (* Vincenzo Librandi, May 11 2015 *)
-
PARI
Vec(-584*x*(x-1)*(7*x^6+47*x^5+2757*x^4+18250*x^3+2757*x^2+47*x+7) / ((x^4-2136*x^2-1)*(x^4+2136*x^2-1)) + O(x^100))
Formula
a(n) = 4562498*a(n-4)-a(n-8).
G.f.: -584*x*(x-1)*(7*x^6+47*x^5+2757*x^4+18250*x^3+2757*x^2+47*x+7) / ((x^4-2136*x^2-1)*(x^4+2136*x^2-1)).
Comments