cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A073101 Number of integer solutions (x,y,z) to 4/n = 1/x + 1/y + 1/z satisfying 0 < x < y < z.

Original entry on oeis.org

0, 0, 1, 1, 2, 5, 5, 6, 4, 9, 7, 15, 4, 14, 33, 22, 4, 21, 9, 30, 25, 22, 19, 45, 10, 17, 25, 36, 7, 72, 17, 62, 27, 22, 59, 69, 9, 29, 67, 84, 7, 77, 12, 56, 87, 39, 32, 142, 16, 48, 46, 53, 13, 82, 92, 124, 37, 30, 25, 178, 11, 34, 147, 118, 49, 94, 15, 67, 51, 176, 38, 191, 7
Offset: 1

Views

Author

Robert G. Wilson v, Aug 18 2002

Keywords

Comments

In 1948 Erdős and Straus conjectured that for any positive integer n >= 2 the equation 4/n = 1/x + 1/y + 1/z has a solution with positive integers x, y and z (without the additional requirement 0 < x < y < z). All of the solutions can be printed by removing the comment symbols from the Mathematica program. For the solution (x,y,z) having the largest z value, see (A075245, A075246, A075247). See A075248 for Sierpiński's conjecture for 5/n.
See (A257839, A257840, A257841) for the lexicographically smallest solutions, and A257843 for the differences between these and those with largest z-value. - M. F. Hasler, May 16 2015

Examples

			a(5)=2 because there are two solutions: 4/5 = 1/2 + 1/4 + 1/20 and 4/5 = 1/2 + 1/5 + 1/10.
		

Crossrefs

Cf. A192787 (# distinct solutions with x <= y <= z).

Programs

  • Haskell
    import Data.Ratio ((%), numerator, denominator)
    a073101 n = length [(x,y) |
       x <- [n `div` 4 + 1 .. 3 * n `div` 4],   let y' = recip $ 4%n - 1%x,
       y <- [floor y' + 1 .. floor (2*y') + 1], let z' = recip $ 4%n - 1%x - 1%y,
       denominator z' == 1 && numerator z' > y && y > x]
    -- Reinhard Zumkeller, Jan 03 2011
    
  • Maple
    A:= proc(n)
       local x,t, p,q,ds,zs,ys,js, tot,j;
    tot:= 0;
    for x from 1+floor(n/4) to ceil(3*n/4)-1 do
        t:= 4/n - 1/x;
        p:= numer(t);
        q:= denom(t);
        ds:= convert(select(d -> (d < q) and d + q mod p = 0,
              numtheory:-divisors(q^2)),list);
        ys:= map(d -> (d+q)/p, ds);
        zs:= map(d -> (q^2/d+q)/p, ds);
        js:= select(j -> ys[j] > x,[$1..nops(ds)]);
        tot:= tot + nops(js);
    od;
    tot;
    end proc:
    seq(A(n),n=2..100); # Robert Israel, Aug 22 2014
  • Mathematica
    (* download Egypt.m from D. Eppstein's site and put it into MyOwn directory underneath Mathematica\AddOns\StandardPackages *) Needs["MyOwn`Egypt`"]; Table[ Length[ EgyptianFraction[4/n, Method -> Lexicographic, MaxTerms -> 3, MinTerms -> 3, Duplicates -> Disallow, OutputFormat -> Plain]], {n, 5, 80}]
    m = 4; For[lst = {}; n = 2, n <= 100, n++, cnt = 0; xr = n/m; If[IntegerQ[xr], xMin = xr + 1, xMin = Ceiling[xr]]; If[IntegerQ[3xr], xMax = 3xr - 1, xMax = Floor[3xr]]; For[x = xMin, x <= xMax, x++, yr = 1/(m/n - 1/x); If[IntegerQ[yr], yMin = yr + 1, yMin = Ceiling[yr]]; If[IntegerQ[2yr], yMax = 2yr + 1, yMax = Ceiling[2yr]]; For[y = yMin, y <= yMax, y++, zr = 1/(m/n - 1/x - 1/y); If[y > x && zr > y && IntegerQ[zr], z = zr; cnt++; (*Print[n, " ", x, " ", y, " ", z]*)]]]; AppendTo[lst, cnt]]; lst
    f[n_] := Length@ Solve[4/n == 1/x + 1/y + 1/z && 0 < x < y < z, {x, y, z}, Integers]; Array[f, 72, 2] (* Robert G. Wilson v, Jul 17 2013 *)
  • PARI
    A073101(n)=sum(c=n\4+1,n*3\4,sum(b=c+1,ceil(2/(t=4/n-1/c))-1,numerator(t-1/b)==1)) \\ M. F. Hasler, May 15 2015

Extensions

Edited by T. D. Noe, Sep 10 2002
Extended to offset 1 with a(1) = 0 by M. F. Hasler, May 16 2015

A257850 a(n) = floor(n/10) * (n mod 10).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 0, 8
Offset: 0

Views

Author

M. F. Hasler, May 10 2015

Keywords

Comments

Equivalently, write n in base 10, multiply the last digit by the number with its last digit removed.
See A142150(n-1) for the base 2 analog and A257843 - A257849 for the base 3 - base 9 variants.
The first 100 terms coincide with those of A035930 (maximal product of any two numbers whose concatenation is n), A171765 (product of digits of n, or 0 for n<10), A257297 ((initial digit of n)*(n with initial digit removed)), but the sequence is of course different from each of these three.
The terms a(10) - a(100) also coincide with those of A007954 (product of decimal digits of n).

Crossrefs

Cf. A142150 (the base 2 analog), A115273, A257844 - A257849.

Programs

  • Magma
    [Floor(n/10)*(n mod 10): n in [0..100]]; // Vincenzo Librandi, May 11 2015
    
  • Mathematica
    Table[Floor[n/10] Mod[n, 10], {n, 100}] (* Vincenzo Librandi, May 11 2015 *)
  • PARI
    a(n,b=10)=(n=divrem(n,b))[1]*n[2]
    
  • Python
    def A257850(n): return n//10*(n%10) # M. F. Hasler, Sep 01 2021

Formula

a(n) = 2*a(n-10)-a(n-20). - Colin Barker, May 11 2015
G.f.: x^11*(9*x^8+8*x^7+7*x^6+6*x^5+5*x^4+4*x^3+3*x^2+2*x+1) / ((x-1)^2*(x+1)^2*(x^4-x^3+x^2-x+1)^2*(x^4+x^3+x^2+x+1)^2). - Colin Barker, May 11 2015
Showing 1-2 of 2 results.