A257851 Triangle read by rows: row n contains the first n+1 numbers m such that A046660(m) = n.
1, 4, 9, 8, 24, 27, 16, 48, 72, 80, 32, 96, 144, 160, 216, 64, 192, 288, 320, 432, 448, 128, 384, 576, 640, 864, 896, 1296, 256, 768, 1152, 1280, 1728, 1792, 2592, 2816, 512, 1536, 2304, 2560, 3456, 3584, 5184, 5632, 6400, 1024, 3072, 4608, 5120, 6912, 7168, 10368, 11264, 12800, 13312
Offset: 0
Examples
0: 1 1: 4 9 2: 8 24 27 3: 16 48 72 80 4: 32 96 144 160 216 5: 64 192 288 320 432 448 6: 128 384 576 640 864 896 1296 7: 256 768 1152 1280 1728 1792 2592 2816 8: 512 1536 2304 2560 3456 3584 5184 5632 6400 -- ------------------------------------------------------------ 0: 1 1: 2^2 3^2 2: 2^3 2^3*3 3^3 3: 2^4 2^4*3 2^3*3^2 2^4*5 4: 2^5 2^5*3 2^4*3^2 2^5*5 2^3*3^3 5: 2^6 2^6*3 2^5*3^2 2^6*5 2^4*3^3 2^6*7 6: 2^7 2^7*3 2^6*3^2 2^7*5 2^5*3^3 2^7*7 2^4*3^4 7: 2^8 2^8*3 2^7*3^2 2^8*5 2^6*3^3 2^8*7 2^5*3^4 2^8*11 8: 2^9 2^9*3 2^8*3^2 2^9*5 2^7*3^3 2^9*7 2^6*3^4 2^9*11 2^8*5^2
Links
- Reinhard Zumkeller, Rows n = 0..20 of triangle, flattened
Crossrefs
Programs
-
Haskell
a257851 n k = a257851_tabl !! n !! k a257851_row n = a257851_tabl !! n a257851_tabl = map (\x -> take (x + 1) $ filter ((== x) . a046660) [1..]) [0..]
-
Mathematica
T[n_] := Reap[For[m = 1; k = 1, k <= n+1, If[PrimeOmega[m] - PrimeNu[m] == n, Sow[m]; k++]; m++]][[2, 1]]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Sep 17 2021 *)
Formula
T(n,0) = A151821(n+1);
T(n,n-1) = A261256(n) for n > 0;
T(n,n) = A264959(n).
T(0,0) = A005117(1);
T(1,k) = A060687(k+1), k = 0..1;
T(2,k) = A195086(k+1), k = 0..2;
T(3,k) = A195087(k+1), k = 0..3;
T(4,k) = A195088(k+1), k = 0..4;
T(5,k) = A195089(k+1), k = 0..5;
T(6,k) = A195090(k+1), k = 0..6;
T(7,k) = A195091(k+1), k = 0..7;
T(8,k) = A195092(k+1), k = 0..8;
T(9,k) = A195093(k+1), k = 0..9;
T(10,k) = A195069(k+1), k = 0..10.
Comments