cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257851 Triangle read by rows: row n contains the first n+1 numbers m such that A046660(m) = n.

Original entry on oeis.org

1, 4, 9, 8, 24, 27, 16, 48, 72, 80, 32, 96, 144, 160, 216, 64, 192, 288, 320, 432, 448, 128, 384, 576, 640, 864, 896, 1296, 256, 768, 1152, 1280, 1728, 1792, 2592, 2816, 512, 1536, 2304, 2560, 3456, 3584, 5184, 5632, 6400, 1024, 3072, 4608, 5120, 6912, 7168, 10368, 11264, 12800, 13312
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 29 2015

Keywords

Comments

At the suggestion of Michel Marcus's remark in Carlos Eduardo Olivieri's A261256.

Examples

			0:    1
1:    4     9
2:    8    24      27
3:   16    48      72    80
4:   32    96     144   160     216
5:   64   192     288   320     432   448
6:  128   384     576   640     864   896    1296
7:  256   768    1152  1280    1728  1792    2592   2816
8:  512  1536    2304  2560    3456  3584    5184   5632    6400
--  ------------------------------------------------------------
0:  1
1:  2^2   3^2
2:  2^3 2^3*3     3^3
3:  2^4 2^4*3 2^3*3^2 2^4*5
4:  2^5 2^5*3 2^4*3^2 2^5*5 2^3*3^3
5:  2^6 2^6*3 2^5*3^2 2^6*5 2^4*3^3 2^6*7
6:  2^7 2^7*3 2^6*3^2 2^7*5 2^5*3^3 2^7*7 2^4*3^4
7:  2^8 2^8*3 2^7*3^2 2^8*5 2^6*3^3 2^8*7 2^5*3^4 2^8*11
8:  2^9 2^9*3 2^8*3^2 2^9*5 2^7*3^3 2^9*7 2^6*3^4 2^9*11 2^8*5^2
		

Crossrefs

Programs

  • Haskell
    a257851 n k = a257851_tabl !! n !! k
    a257851_row n = a257851_tabl !! n
    a257851_tabl = map
       (\x -> take (x + 1) $ filter ((== x) . a046660) [1..]) [0..]
  • Mathematica
    T[n_] := Reap[For[m = 1; k = 1, k <= n+1, If[PrimeOmega[m] - PrimeNu[m] == n, Sow[m]; k++]; m++]][[2, 1]];
    Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Sep 17 2021 *)

Formula

T(n,0) = A151821(n+1);
T(n,n-1) = A261256(n) for n > 0;
T(n,n) = A264959(n).
T(0,0) = A005117(1);
T(1,k) = A060687(k+1), k = 0..1;
T(2,k) = A195086(k+1), k = 0..2;
T(3,k) = A195087(k+1), k = 0..3;
T(4,k) = A195088(k+1), k = 0..4;
T(5,k) = A195089(k+1), k = 0..5;
T(6,k) = A195090(k+1), k = 0..6;
T(7,k) = A195091(k+1), k = 0..7;
T(8,k) = A195092(k+1), k = 0..8;
T(9,k) = A195093(k+1), k = 0..9;
T(10,k) = A195069(k+1), k = 0..10.