cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A257872 Decimal expansion of the Madelung type constant C(4|1) (negated).

Original entry on oeis.org

5, 5, 4, 5, 1, 7, 7, 4, 4, 4, 4, 7, 9, 5, 6, 2, 4, 7, 5, 3, 3, 7, 8, 5, 6, 9, 7, 1, 6, 6, 5, 4, 1, 2, 5, 4, 4, 6, 0, 4, 0, 0, 1, 0, 7, 4, 8, 8, 2, 0, 4, 2, 0, 3, 2, 9, 6, 5, 4, 4, 0, 0, 7, 5, 9, 4, 7, 1, 4, 8, 9, 7, 5, 7, 5, 7, 5, 5, 7, 7, 2, 4, 8, 4, 6, 9, 0, 6, 6, 1, 5, 9, 7, 1, 3, 4, 9, 5, 0, 0, 3, 3, 6
Offset: 1

Views

Author

Jean-François Alcover, May 11 2015

Keywords

Comments

Without sign, this is the volume of the intersection of the three (solid) hyperboloids x^2 + y^2 - z^2 <= 1; y^2 + z^2 - x^2 <= 1; z^2 + x^2 - y^2 <= 1. See Villarino et al. - Michel Marcus, Aug 12 2021
In other words, decimal expansion of the volume of the unit trihyperboloid. - Eric W. Weisstein, Sep 18 2021

Examples

			-5.54517744447956247533785697166541254460400107488204203296544...
		

Crossrefs

Cf. A347903 (surface area of the unit trihyperboloid).

Programs

Formula

-8*log(2).
4*log(2)/5 = 8*log(2)/10 = Sum_{k>=1} F(k)^2/(k * 3^k), where F(k) is the k-th Fibonacci number (A000045). - Amiram Eldar, Aug 09 2020

A257871 Decimal expansion of the Madelung type constant C(2|1/2) (negated).

Original entry on oeis.org

6, 9, 1, 3, 0, 3, 9, 5, 7, 7, 0, 0, 9, 1, 6, 1, 1, 0, 7, 8, 5, 0, 1, 8, 7, 8, 1, 4, 2, 6, 9, 7, 7, 9, 1, 2, 3, 0, 2, 1, 0, 0, 8, 9, 5, 0, 6, 9, 1, 5, 9, 4, 3, 2, 7, 1, 3, 9, 7, 9, 8, 3, 2, 9, 8, 2, 7, 1, 8, 9, 0, 5, 2, 7, 2, 9, 5, 2, 7, 5, 9, 6, 8, 2, 3, 2, 9, 4, 6, 9, 1, 1, 5, 5, 7, 3, 2, 7, 1, 9, 6, 1, 1, 2
Offset: 1

Views

Author

Jean-François Alcover, May 11 2015

Keywords

Examples

			-6.913039577009161107850187814269779123021008950691594327139798329827...
		

Crossrefs

Programs

  • Maple
    evalf(2*sqrt(Pi)*Zeta(1/2)*(Zeta(0, 1/2, 1/4)-Zeta(0, 1/2, 3/4)), 120); # Vaclav Kotesovec, May 11 2015
  • Mathematica
    RealDigits[2*Sqrt[Pi]*Zeta[1/2]*(Zeta[1/2, 1/4] - Zeta[1/2, 3/4]), 10, 104] // First
  • PARI
    2*sqrt(Pi)*zeta(1/2)*(zetahurwitz(1/2, 1/4) - zetahurwitz(1/2, 3/4)) \\ Charles R Greathouse IV, Jan 31 2018

Formula

Equals 2*sqrt(Pi)*zeta(1/2)*(zeta(1/2, 1/4) - zeta(1/2, 3/4)).
Equals 4*Pi^(1 - 2*nu)*gamma(nu)*zeta(nu)*DirichletBeta(nu) with nu = 1/2.

A365281 Decimal expansion of the least real solution x > 0 of Gamma(1/4 + x/2)/(Pi^x*Gamma(1/4 - x/2)) = 1.

Original entry on oeis.org

1, 8, 5, 6, 7, 7, 5, 0, 8, 4, 7, 0, 6, 9, 6, 6, 2, 0, 7, 2, 7, 9, 1, 4, 5, 8, 3, 6, 5, 6, 2, 3, 4, 4, 7, 3, 0, 3, 3, 8, 4, 2, 0, 1, 7, 3, 2, 6, 5, 8, 5, 3, 9, 8, 3, 3, 4, 7, 4, 6, 1, 7, 7, 8, 5, 4, 3, 6, 0, 0, 6, 4, 1, 7, 3, 5, 7, 9, 7, 2, 7, 1, 1, 7, 3, 1, 5, 9, 1, 4, 0, 1, 2, 1, 0, 6, 5
Offset: 2

Views

Author

Thomas Scheuerle, Aug 31 2023

Keywords

Examples

			18.56775084706966207279145836562344730...
		

Crossrefs

Programs

  • Mathematica
    FindRoot[-1 + Gamma[1/4 - x/2]/(Pi^(-x) Gamma[1/4 + x/2]) == 0, {x, 18.5569, 18.5739}, WorkingPrecision -> 100]

Formula

Let x be this constant:
Gamma(1/4 - x/2)/(Pi^x*Gamma(1/4 + x/2)) = 1.
zeta((1/2) + x) = zeta((1/2) - x), where zeta is the Riemann zeta function.
(2*Pi)^(-1/2 - x)*(2*x - 1)*cos(Pi/4 + (Pi*x)/2)*Gamma(x - 1/2) = 1.
2^(1/2 - x)*Pi^(-1/2 - x)*sin(Pi/2 - (Pi*x)/2)*Gamma(1/2 + x) = 1.
Z(i*x) = -zeta((1/2) + x) = -zeta((1/2) - x), where Z is the Riemann-Siegel Z function and i is the imaginary unit. From this follows that theta(i*-x) = theta(i*x) is an odd multiple of Pi where theta is the Riemann-Siegel theta function. This can also be seen if we consider Hardy's definition of the Z function: Z(s) = Pi^(-i*s/2)*zeta((1/2) + i*s)*Gamma((1/4)+(i*s/2))^(1/2)/Gamma((1/4) - (i*s/2))^(1/2).
Showing 1-3 of 3 results.