cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257933 Prime p such that sqrt(p+2) is semiprime (A001358).

Original entry on oeis.org

79, 223, 439, 1087, 1223, 2399, 3023, 4759, 5927, 8647, 14159, 14639, 21023, 24023, 25919, 28559, 31327, 33487, 42023, 47087, 56167, 61007, 64007, 67079, 70223, 71287, 89399, 90599, 91807, 95479, 104327, 112223, 116279, 126023, 137639, 152879, 172223, 199807
Offset: 1

Views

Author

Vladimir Shevelev, May 13 2015

Keywords

Comments

The terms are not congruent to 1 (mod 10).
The sequence contains no Mersenne prime p=2^t-1. Since p > 79, t is an odd prime and p+2 = 2^t+1 is divisible by 3. So, since 2^t+1 should be square, 2^t+1 is divisible by 9, i.e., (2^t+1)/3 == 0 (mod 3). (1)
Note that either t=6k+1 or t=6m+5. In each case, (1) is impossible.
Indeed, if t=6k+1, then (2^t+1)/3 = (2*(4^k)^3+1)/3 = (2*(3+1)^(3*k)+1)/3 == (2*binomial(3*k,1)*3+2+1)/3 == 1(mod 3), and analogously in case t=6*m+5, (2^t+1)/3 == 2 (mod 3): a contradiction.

Examples

			Prime 79 is in the sequence because sqrt(79+2) = 9 = 3*3 which is semiprime.
Prime 1223 is in the sequence because sqrt(1223+2) = 35 = 5*7 which is semiprime.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime@Range@18000,PrimeOmega[Sqrt[#+2]]==2&]//Quiet (* Ivan N. Ianakiev, May 13 2015 *)
  • PARI
    issemi(n)=bigomega(n)==2
    is(n)=isprime(n) && issquare(n+2,&n) && issemi(n) \\ Charles R Greathouse IV, May 13 2015
    
  • PARI
    list(lim)=my(v=List(), k=sqrt(lim+2), t); forprime(p=2, sqrt(k), forprime(q=p, k\p, if(isprime(t=(p*q)^2-2), listput(v, t)))); Set(v) \\ Charles R Greathouse IV, May 13 2015
    
  • Perl
    use ntheory ":all"; forprimes { say if is_power($+2,2) && scalar(factor(sqrtint($+2)))==2 } 1e7; # Dana Jacobsen, May 13 2015
    
  • Perl
    use ntheory ":all"; sub list { my($lim,$k,$t,$p,%v)=shift; $k=sqrt($lim+2); forprimes { $p=$; forprimes { $t=($p*$)**2-2; $v{$t}++ if is_prime($t); } $p,int($k/$p); } int(sqrt($k)); my @v=sort{$a<=>$b} keys %v; @v; } say for list(1e10); # Translation of PARI, Dana Jacobsen, May 13 2015

Formula

Trivially a(n) >> n^2 log^2 n/(log log n)^2. - Charles R Greathouse IV, May 13 2015

Extensions

More terms from Peter J. C. Moses, May 13 2015