cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257968 Zeroless numbers n such that the product of digits of n, the product of digits of n^2 and the product of digits of n^3 form a geometric progression.

Original entry on oeis.org

1, 2, 38296, 151373, 398293, 422558, 733381, 971973, 2797318, 3833215, 6988327, 7271256, 8174876, 8732657, 9872323, 9981181, 11617988, 11798921, 14791421, 15376465, 15487926, 15625186, 16549885, 18543639, 21316582, 21492828, 22346329, 22867986, 23373644
Offset: 1

Views

Author

Pieter Post, May 15 2015

Keywords

Comments

This sequence appears to be infinite.

Examples

			38296 is in the sequence because the pod equals 2592 (=3*8*2*9*6), pod(38296^2) is 622080, pod(38296^3) is 149299200. 2592*240 = 622080 => 622080*240 = 149299200.
		

Crossrefs

Cf. A052382 (zeroless numbers), A007954 (product of digits).

Programs

  • Mathematica
    pod[n_]:=Times@@IntegerDigits@n; Select[Range[10^8], pod[#^3] pod[#] == pod[#^2]^2 >0 &] (* Vincenzo Librandi, May 16 2015 *)
  • PARI
    pod(n) = my(d = digits(n)); prod(k=1, #d, d[k]);
    isok(n) = (pd = pod(n)) && (pdd = pod(n^2)) && (pdd/pd == pod(n^3)/pdd); \\ Michel Marcus, May 30 2015
  • Python
    def pod(n):
        kk = 1
        while n > 0:
            kk= kk*(n%10)
            n =int(n//10)
        return kk
    for i in range (1,10**7):
        if pod(i**3)*pod(i)==pod(i**2)**2 and pod(i**2)!=0:
            print (i, pod(i),pod(i**2),pod(i**3),pod(i**2)//pod(i))
    

Formula

pod(n^3)/pod(n^2)=pod(n^2)/pod(n), where pod(n) = A007954(n).

Extensions

a(17)-a(29) from Giovanni Resta, May 15 2015