A257974 Prime numbers that are not the sum of one or more consecutive triangular numbers.
2, 5, 7, 11, 13, 17, 23, 29, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 89, 97, 101, 103, 107, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 211, 223, 227, 229, 233, 239, 241, 257, 263, 269, 271, 277, 281, 283
Offset: 1
Keywords
Examples
From _Michael De Vlieger_, Nov 06 2015: (Start) 3 is a triangular number thus is not a term. The triangular numbers <= 7 are {1, 3, 6}. None of these are 7. 7 is not found among the sums of adjacent pairs of terms, i.e., {{1, 3}, {3, 6}} = {4, 9}. The sum of all numbers {1, 3, 6} = 10. Thus 7 is a term. The triangular numbers <= 19 are {1, 3, 6, 10, 15}. 19 is not a triangular number. 19 is not found among sums of pairs of adjacent terms {4, 9, 16, 25} nor among those of quartets of adjacent terms {20, 34}, but is found among sums of triples of adjacent terms {10, 19, 31}. Thus 19 is not a term. (End)
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Programs
-
Maple
isA257974 := proc(n) if isprime(n) then return not isA034706(n) ; else false ; end if; end proc: for n from 0 to 400 do if isA257974(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Dec 14 2015
-
Mathematica
t = Array[Binomial[# + 1, 2] &, {10^4}]; fQ[n_] := Block[{s}, s = TakeWhile[t, # <= n &]; AnyTrue[Flatten[Total /@ Partition[s, #, 1] & /@ Range[Length@ s - 1]], # == n &]]; Select[Prime@ Range@ 120, ! fQ@ # &] (* Michael De Vlieger, Nov 06 2015, Version 10 *)
Extensions
More terms from Michael De Vlieger, Nov 06 2015
Comments