A257996 Let s0 and s1 be the sums of the reciprocals of the even and odd divisors of n, respectively. The sequence lists the numbers n such that 3*s0 - 2*s1 = 1.
120, 1456, 121024, 2198352216064, 576458003527499776
Offset: 1
Keywords
Examples
120 = 2^3*3*5 = (2*A000668(1)+2)* A000668(1)*(2*A000668(1)-1); 1456 = 2^4*7*13 = (2*A000668(2)+2)* A000668(2)*(2*A000668(2)-1); 121024 = 2^6*31*61 =(2*A000668(3)+2)* A000668(3)*(2*A000668(3)-1); 2198352216064 = 2^14*8191*16381= (2*A000668(5)+2)*A000668(5)*(2*A000668(5)-1); 576458003527499776 = 2^20*524287*1048573 = (2*A000668(7)+2)* A000668(7)*(2*A000668(7)-1).
Crossrefs
Cf. A000668.
Programs
-
Maple
with(numtheory):nn:=100000: for n from 2 by 2 to nn do : x:=divisors(n):n0:=nops(x):s:=sum('x[i]', 'i'=1..n0): s0:=0:s1:=0: for k from 1 to n0 do: if irem(x[k],2)=0 then s0:=s0+1/x[k] else s1:=s1+1/x[k]: fi: od: if 3*s0-2*s1=1 then print(n):else fi:od:
-
Mathematica
Do[s0=0;s1=0;Do[d=Divisors[n][[i]];If[Mod[d,2]==0,s0=s0+1/d,s1=s1+1/d],{i,1,Length[Divisors[n]]}];If[3*s0-2*s1==1,Print[n]],{n,2,10^9,2}]
-
PARI
siod(n) = sumdiv(n, d, (d%2)/d); seod(n) = sumdiv(n, d, (1-d%2)/d); isok(n) = 3*seod(n)-2*siod(n) == 1; \\ Michel Marcus, May 16 2015
Comments