A258024 Natural numbers n such that the iteration of the function floor(tan(k)) applied to n eventually reaches [the fixed point] 1 (or any larger integer if such fixed points exist), where k is interpreted as k radians.
1, 4, 23, 26, 45, 48, 67, 70, 89, 92, 105, 111, 114, 121, 127, 133, 136, 143, 149, 155, 158, 171, 177, 180, 183, 193, 199, 202, 205, 215, 221, 224, 227, 243, 246, 249, 265, 268, 271, 290, 293, 300, 312, 315, 334, 337, 344, 356, 359, 378, 381, 400, 403, 422, 425, 444, 447, 460, 466, 469, 476, 482, 488, 491, 498, 504, 510, 513, 526, 532, 535, 538, 548, 554, 557, 560, 570, 576, 579, 582, 598, 601, 604, 620, 623, 626, 645, 648, 655, 667, 670
Offset: 1
Keywords
Examples
For n=0: 0. (0: 0 iteration) For n=1: 1. (1: 0 iteration) (in this sequence) For n=2: 2, -3, 0. (0: 2 iterations) For n=3: 3, -1, -2, 2, -3, 0. (0: 5 iterations) For n=4: 4, 1. (1: 1 iteration) (in this sequence) For n=105: 105, 4, 1. (1: 2 iterations) (in this sequence) For n=3561: 3561, -212, -18, 1. (1: 3 iterations) (in this sequence) J. K. Haugland found n=37362253 s.t. tan(n) > n. (Cf. link.) For n=37362253: 37362253, 37754853, -1, -2, 2, -3, 0. (0: 6 iterations) Bob Delaney found n=3083975227 s.t. tan(n) > n. (Cf. Robert Israel link.) For n=3083975227: 3083975227, 13356993783, -1, -2, 2, -3, 0. For n s.t. tan(n) > n, see A249836. - _Daniel Forgues_, May 27 2015
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- Jan Kristian Haugland, Re: analysis with tan n > n
- Robert Israel, Re: tan n > n
Crossrefs
Programs
-
Mathematica
x = Table[Floor[Tan[n]], {n, 0, 10^4}]; y = NestWhile[Floor[Tan[#]] &, x, UnsameQ, 2]; Flatten[Position[y, 1]] - 1
Extensions
Based on rewording by Daniel Forgues changed the formal definition to include also any hypothetical fixed points larger than one - Antti Karttunen, May 26 2015
Comments