A258054 Circle of fifths cycle (counterclockwise).
1, 6, 11, 4, 9, 2, 7, 12, 5, 10, 3, 8, 1, 6, 11, 4, 9, 2, 7, 12, 5, 10, 3, 8, 1, 6, 11, 4, 9, 2, 7, 12, 5, 10, 3, 8, 1, 6, 11, 4, 9, 2, 7, 12, 5, 10, 3, 8, 1, 6, 11, 4, 9, 2, 7, 12, 5, 10, 3, 8, 1, 6, 11, 4, 9, 2, 7, 12, 5, 10, 3, 8, 1, 6, 11, 4, 9, 2, 7, 12, 5, 10, 3, 8, 1, 6, 11, 4, 9, 2, 7, 12, 5, 10, 3, 8, 1, 6, 11, 4, 9, 2, 7, 12, 5, 10, 3, 8
Offset: 1
Examples
For a(3), 1+5+5 = 11 (mod 12). For a(4), 1+5+5+5 = 4 (mod 12).
Links
- OEIS Wiki, The multi-faceted reach of the OEIS: Music
- Wikipedia, Circle of fifths
- Wikipedia, Pythagorean comma
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,1).
- OEIS index entry for music
Programs
-
Magma
[1+5*(n-1) mod 12: n in [1..80]]; // Vincenzo Librandi, May 19 2015
-
Maple
A258054:=n->1+(5*(n-1) mod 12): seq(A258054(n), n=1..100); # Wesley Ivan Hurt, May 22 2015
-
Mathematica
PadRight[{}, 100, {1, 6, 11, 4, 9, 2, 7, 12, 5, 10, 3, 8}] (* Vincenzo Librandi, May 19 2015 *) LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1},{1, 6, 11, 4, 9, 2, 7, 12, 5, 10, 3, 8},108] (* Ray Chandler, Aug 27 2015 *)
-
PARI
a(n)=1+5*(n-1) \\ Charles R Greathouse IV, May 22 2015
-
PARI
Vec(x*(1 + 6*x + 11*x^2 + 4*x^3 + 9*x^4 + 2*x^5 + 7*x^6 + 12*x^7 + 5*x^8 + 10*x^9 + 3*x^10 + 8*x^11) / (1 - x^12) + O(x^80)) \\ Colin Barker, Nov 15 2019
Formula
Periodic with period 12: a(n) = 1 + (5(n-1) mod 12).
From Colin Barker, Nov 15 2019: (Start)
G.f.: x*(1 + 6*x + 11*x^2 + 4*x^3 + 9*x^4 + 2*x^5 + 7*x^6 + 12*x^7 + 5*x^8 + 10*x^9 + 3*x^10 + 8*x^11) / (1 - x^12).
a(n) = a(n-12) for n>12.
(End)
Extensions
Extended by Ray Chandler, Aug 27 2015
Comments