cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A258091 Smallest prime factor of 1+78557*2^n, cf. A258073.

Original entry on oeis.org

5, 3, 73, 3, 5, 3, 7, 3, 5, 3, 13, 3, 5, 3, 19, 3, 5, 3, 7, 3, 5, 3, 13, 3, 5, 3, 37, 3, 5, 3, 7, 3, 5, 3, 13, 3, 5, 3, 71, 3, 5, 3, 7, 3, 5, 3, 13, 3, 5, 3, 19, 3, 5, 3, 7, 3, 5, 3, 13, 3, 5, 3, 37, 3, 5, 3, 7, 3, 5, 3, 13, 3, 5, 3, 73, 3, 5, 3, 7, 3, 5, 3
Offset: 1

Views

Author

Reinhard Zumkeller, May 19 2015

Keywords

Comments

a(n) = A020639(A258073(a(n)));
a(n) <= 73; see also A258095.
Periodic, a(n) = a(n + 840420) for all n (and 840420 is minimal with this property). The only values that occur, are {3, 5, 7, 13, 19, 37, 73} union {47, 59, 71}. - Jeppe Stig Nielsen, Jul 19 2020

Crossrefs

Programs

  • Haskell
    a258091 = a020639 . a258073
    
  • PARI
    a(n)=forprime(p=2,,78557*Mod(2,p)^n+1==0 && return(p)) \\ Jeppe Stig Nielsen, Jul 19 2020

A258095 Numbers m, such that the smallest prime factor of 1+78557*2^m doesn't belong to the covering set {3, 5, 7, 13, 19, 37, 73}.

Original entry on oeis.org

39, 183, 219, 1047, 1227, 1299, 1875, 2271, 2559, 2703, 3315, 3531, 3819, 4359, 5079, 5187, 5403, 6015, 6339, 6447, 6843, 7491, 7599, 7671, 8499, 8535, 8859, 9327, 9579, 10119, 10155, 10623, 10983, 11379, 11667, 11811, 12639, 12711, 13467, 13755, 13899
Offset: 1

Views

Author

Reinhard Zumkeller, May 19 2015

Keywords

Comments

A258091(a(n)) < 73, as each term in A258073 has at least one prime factor in the covering set.

Examples

			a(1) = 39; A258073(39) = 43187167471599617 = 71 * 73 * 211 * 39490356709, and 71 is not an element of the covering set.
		

Crossrefs

Programs

  • Haskell
    a258095 n = a258095_list !! (n-1)
    a258095_list = filter
                   (\x -> a258091 x `notElem` [3, 5, 7, 13, 19, 37, 73]) [1..]

A279798 Largest prime factor of 78557*2^n + 1.

Original entry on oeis.org

67, 104743, 8609, 281, 521, 1163, 1436471, 12391, 136343, 1483, 23663, 727, 10453, 2029, 135481883, 7429021, 2059324621, 6864415403, 3716857, 9629, 451358821, 51782483, 62504399, 439322585771, 63337, 128110399, 42209, 59569669, 111486983, 10936129, 31585821557
Offset: 1

Views

Author

Seiichi Manyama, Dec 19 2016

Keywords

Comments

a(n) <= A258073(n) / A258091(n).

Examples

			78557 * 2^1 + 1 = 157115 = 5 * 7 * 67^2. So a(1) = 67.
78557 * 2^2 + 1 = 314229 = 3 * 104743. So a(2) = 104743.
		

Crossrefs

Programs

  • Mathematica
    Table[FactorInteger[2^n * 78557 + 1][[-1, 1]], {n, 30}] (* Alonso del Arte, Jan 01 2017 *)
  • PARI
    a(n) = my(k=78557*2^n+1); factor(k)[omega(k), 1] \\ Felix Fröhlich, Jan 01 2017

Formula

a(n) = A006530(A258073(n)).
Showing 1-3 of 3 results.