cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258128 Octagonal numbers (A000567) that are the sum of two consecutive octagonal numbers.

Original entry on oeis.org

5461, 813281, 7272157205, 1083057360705, 9684433559760981, 1442322650052752161, 12896895753596262561301, 1920761265591267733640321, 17174976631595008767000306005, 2557904668044167195987033355105, 22872156829955018609383449248248341
Offset: 1

Views

Author

Colin Barker, May 21 2015

Keywords

Examples

			5461 is in the sequence because Oct(43) = 5461 = 2640 + 2821 = Oct(30) + Oct(31).
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-x*(x^4 +20*x^3 -1146230*x^2 +807820*x +5461)/((x-1)*(x^2 -1154*x +1)*(x^2 +1154*x +1)), {x, 0, 50}], x] (* G. C. Greubel, Oct 18 2017 *)
    LinearRecurrence[{1,1331714,-1331714,-1,1},{5461,813281,7272157205,1083057360705,9684433559760981},20] (* Harvey P. Dale, Feb 19 2018 *)
  • PARI
    Vec(-x*(x^4 +20*x^3 -1146230*x^2 +807820*x +5461)/((x-1)*(x^2 -1154*x +1)*(x^2 +1154*x +1)) + O('x^20))

Formula

G.f.: -x*(x^4+20*x^3-1146230*x^2+807820*x+5461) / ((x-1)*(x^2-1154*x+1)*(x^2+1154*x+1)).