cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258214 Primes formed by concatenating p^2 with q, where p, q are consecutive primes.

Original entry on oeis.org

43, 257, 12113, 84131, 96137, 168143, 372167, 32041181, 120409349, 139129379, 292681547, 410881643, 516961727, 528529733, 863041937, 966289991, 10629611033, 10670891039, 11902811093, 16307291279, 21112091459, 25058891597, 29618411723, 31933691789, 35006411873
Offset: 1

Views

Author

K. D. Bajpai, May 23 2015

Keywords

Comments

All the terms in this sequence, except a(1), are congruent to 2 (mod 3).

Examples

			a(2) = 257 is prime formed by concatenation of (5^2) = 25 with 7.
a(3) = 12113 is prime formed by concatenation of (11^2) = 121 with 13.
		

Crossrefs

Programs

  • Magma
    [m: n in [1..300] | IsPrime(m) where m is Seqint(Intseq(NthPrime(n+1)) cat Intseq(NthPrime(n)^2))]; // Vincenzo Librandi, May 24 2015
  • Mathematica
    Select[Table[p = Prime[n]; FromDigits[Join[Flatten[ IntegerDigits[{p^2, NextPrime[p]}]]]], {n, 500}], PrimeQ]
    Select[#[[1]]^2*10^IntegerLength[#[[2]]]+#[[2]]&/@Partition[Prime[ Range[ 300]],2,1],PrimeQ] (* Harvey P. Dale, Dec 05 2016 *)
  • PARI
    forprime(p = 1,5000, k=eval(concat( Str(p^2), Str(nextprime(p+1)) )); if(isprime(k), print1(k,", ")))