cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258402 a(n) = (n^2 + 4*n + 6) * n^2.

Original entry on oeis.org

0, 11, 72, 243, 608, 1275, 2376, 4067, 6528, 9963, 14600, 20691, 28512, 38363, 50568, 65475, 83456, 104907, 130248, 159923, 194400, 234171, 279752, 331683, 390528, 456875, 531336, 614547, 707168, 809883, 923400, 1048451, 1185792, 1336203, 1500488, 1679475
Offset: 0

Views

Author

Garrett Frandson, Jun 05 2015

Keywords

Comments

Consider a natural number r such that r has 15 proper divisors and 4 prime factors. (Note that these prime factors do not have to be distinct). The difference between these two values, say d(r), is in this case 11. Where n is a positive integer, d(r^n) = (n^2 + 4*n + 6) * n^2.
The integers which satisfy the proper-divisor-prime-factor requirement are those of A033993.

Examples

			The smallest integer which satisfies this is 210: It has 15 proper divisors (1, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105) and 4 prime factors (2, 3, 5, 7), so d(210) = 11. The square of 210, 44100, we would expect to have a difference of 72 between the number of its proper divisors and prime factors, and with respectively 80 and 8, d(44100) = 72 indeed. Checking this with further integer powers of 210 will continue to generate terms in this sequence.
		

Crossrefs

Cf. A033993.

Programs

  • Magma
    [(n^2+4*n+6)*n^2: n in [0..40]]; // Vincenzo Librandi, Jun 06 2015
    
  • Magma
    I:=[0,11, 72,243,608]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..40]]; // Vincenzo Librandi, Jun 06 2015
    
  • Mathematica
    Table[(n^2 + 4n + 6) * n^2, {n, 0, 39}] (* Alonso del Arte, Jun 06 2015 *)
    CoefficientList[Series[x (11 + 17 x - 7 x^2 + 3 x^3)/(1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 06 2015 *)
    LinearRecurrence[{5,-10,10,-5,1},{0,11,72,243,608},40] (* Harvey P. Dale, May 05 2018 *)
  • PARI
    a(n)=(n^2+4*n+6)*n^2 \\ Charles R Greathouse IV, Jun 15 2015

Formula

From Vincenzo Librandi, Jun 06 2015: (Start)
G.f.: x*(11 + 17*x - 7*x^2 + 3*x^3)/(1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). (End)
E.g.f.: exp(x)*x*(11 + 25*x + 10*x^2 + x^3). - Stefano Spezia, Oct 28 2023

Extensions

More terms from Alonso del Arte, Jun 06 2015