cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258407 Decimal expansion of Integral_{x=0..1} Product_{k>=1} (1-x^k)^3 dx.

Original entry on oeis.org

1, 9, 6, 8, 8, 0, 6, 1, 5, 3, 1, 4, 5, 8, 8, 9, 7, 5, 3, 5, 3, 3, 5, 1, 3, 5, 8, 4, 7, 6, 9, 6, 6, 6, 8, 2, 9, 6, 6, 7, 3, 4, 3, 1, 7, 8, 3, 9, 1, 7, 5, 7, 5, 8, 6, 0, 9, 3, 3, 5, 7, 0, 6, 2, 6, 8, 9, 9, 0, 1, 5, 1, 1, 1, 1, 0, 5, 6, 2, 0, 9, 2, 2, 2, 9, 0, 5, 1, 0, 6, 0, 2, 7, 8, 3, 7, 4, 5, 6, 7, 3, 5, 4, 1, 8, 3
Offset: 0

Views

Author

Vaclav Kotesovec, May 29 2015

Keywords

Comments

In general, Integral_{x=0..1} Product_{k>=1} (1-x^(m*k))^3 dx = Sum_{n>=0} (-1)^n * (2*n+1) / (m*n*(n+1)/2 + 1) is equal to
if 0
if m = 8: Pi/4
if m > 8: 2*Pi / (m * cos((Pi/2)*sqrt(1-8/m)))
Special values: m=4: Pi/(2*cosh(Pi/2)), m=9: 4*Pi/(9*sqrt(3)).
---
Integral_{x=-1..1} Product_{k>=1} (1-x^k)^3 dx = 2*Pi*(1 + sqrt(2) * cosh(sqrt(7)*Pi/4)) / cosh(sqrt(7)*Pi/2) = 1.32639350417409769439126... . - Vaclav Kotesovec, Jun 02 2015

Examples

			0.1968806153145889753533513584769666829667343178391757586093357...
		

Crossrefs

Programs

  • Maple
    evalf(2*Pi/cosh(sqrt(7)*Pi/2), 120);
    evalf(Sum((-1)^n * (2*n+1) / (n*(n+1)/2 + 1), n=0..infinity), 120);
  • Mathematica
    RealDigits[2*Pi*Sech[(Sqrt[7]*Pi)/2],10,105][[1]]
  • PARI
    2*Pi/cosh((sqrt(7)*Pi)/2) \\ Stefano Spezia, Aug 23 2025

Formula

Equals 2*Pi/cosh(sqrt(7)*Pi/2).
Equals Sum_{n>=0} (-1)^n * (2*n+1) / (n*(n+1)/2 + 1).